Skip to main content
Log in

Stability Constants of the Ternary Complexes Formed Between Copper(II), 1,10ʹ-Phenanthroline and Selected Amino Acids

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The speciation in aqueous solution at 25 °C using 1.0 mol·dm−3 KNO3 as the ionic medium, was studied on the ternary copper(II) complexes formed with 1,10'-Phenanthroline (Phen) and the amino acids: Glycine (HGly, HL), α-Alanine (HαAla, HL), β-Alanine (HβAla, HL), Proline (HPro, HL), Serine (HSer, HL), Threonine (HThr, HL), Methionine (HMet HL) and Phenylalanine (HPhe, HL). The potentiometric data were analyzed with the program LETAGROP. The stability of the ternary complexes compared to the binary ones were evaluated in terms of ∆log K and % R.S. To analyze the potential structures present in the solution, we examined the absorption and circular dichroism (CD) spectra. Our analysis indicated the existence of ternary complexes, most of which exhibited square pyramid geometry for most of the amino acids. Nevertheless, the circular dichroism investigations suggested that these ternary complexes were unstable, potentially due to the presence of inversion bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. Del Carpio, L. Hernández, C. Ciangherotti, V.V. Coa, L. Jiménez, V. Lubes, G. Lubes, Coord. Chem. Rev.. Chem. Rev. 372, 117–140 (2018). https://doi.org/10.1016/j.ccr.2018.06.002

    Article  Google Scholar 

  2. L. Hernández, M.L. Araujo, W. Madden, E. Del Carpio, V. Lubes, G. Lubes, J. Inorg. Biochem.Inorg. Biochem. 229, 111712 (2022). https://doi.org/10.1016/j.jinorgbio.2022.111712

    Article  Google Scholar 

  3. L. Hernández, E. Del Carpio, W. Madden, G. Lubes, M.L. Araujo, V. Lubes, Iron phenanthroline complexes: speciation, structure and potential medicinal activity, in A Closer Look at Phenanthroline. ed. by W. Amies (Nova Science Publishers, Hauppauge, 2020), pp.67–100

    Google Scholar 

  4. K.E. Erkkila, D.T. Odom, J.K. Barton, Chem. Rev. 99, 2777–2796 (1999). https://doi.org/10.1021/cr9804341

    Article  Google Scholar 

  5. L. Hernández, G. Lubes, M. Rodríguez, V. Lubes, J. Solut. Chem.Solut. Chem. 41, 840–848 (2012). https://doi.org/10.1007/s10953-012-9836-1

    Article  Google Scholar 

  6. A. Nobrega, V.R. Landaeta, R. Rodriguez-Lugo, M.L. Araujo, W. Madden, L. Hernández, V. Lubes, Phys. Chem. Liq. 59, 969–981 (2021). https://doi.org/10.1080/00319104.2021.1888381

    Article  Google Scholar 

  7. Y. Jara, M.L. Araujo, W. Madden, V. Lubes, L. Hernández, Phys. Chem. Liq. 60, 233–243 (2021). https://doi.org/10.1080/00319104.2021.1949011

    Article  Google Scholar 

  8. C.C. Marzano, M. Pellei, F. Tisato, C. Santini, Anticancer Agents Med Chem. 9, 185–211 (2009). https://doi.org/10.2174/187152009787313837

    Article  Google Scholar 

  9. T. Storr, K.H. Thompson, C. Orvig, Chem. Soc. Rev. 35, 534–544 (2006). https://doi.org/10.1039/B514859FK

    Article  Google Scholar 

  10. G. Daniel, R.H. Harbach, W.C. Guida, Q.P. Dou, Front BiosciBiosci. 9, 2652–2662 (2004). https://doi.org/10.2741/1424

    Article  Google Scholar 

  11. K. Fukui, Y. Fujisawa, H. Ohya-Nishiguchi, H. Kamada, H. Sakurai, J. Inorg. Biochem.Inorg. Biochem. 77, 215–224 (1999). https://doi.org/10.1016/S0162-0134(99)00204-4

    Article  Google Scholar 

  12. L.R. Azuara inventor; Universidad Nacional Autonoma de Mexico, Assignee. Copper amino acidate diimine nitrate compounds and their methyl derivatives and a process for preparing them. United States Patent US 5,576,326 (1996)

  13. F. Teixeira, A. Perez, W. Madden, L. Hernández, E. Del Carpio, V. Lubes, J. Mol. Liq. 224, 346–350 (2016). https://doi.org/10.1016/j.molliq.2016.10.012

    Article  Google Scholar 

  14. F. Brito, M.L. Araujo, V. Lubes, A. D’Ascoli, A. Mederos, P. Gili, S. Domínguez, E. Chinea, R. Hernández-Molina, M.T. Armas, E.J. Baran, J. Coord. Chem.Coord. Chem. 8, 501–512 (2005). https://doi.org/10.1080/00958970500037433

    Article  Google Scholar 

  15. L.G. Sillén, B. Warnqvist, Ark. Kemi 31, 315–339 (1969)

    Google Scholar 

  16. L. Hernández, E. Del Carpio, W. Madden, G. Lubes, A. Perez, R.E. Rodriguez-Lugo, V.R. Landaeta, M.L. Araujo, J.D. Martinez, V. Lubes, Phys. Chem. Liq. 58, 31–48 (2020). https://doi.org/10.1080/00319104.2018.1534235

    Article  Google Scholar 

  17. A. Nobrega, V.R. Landaeta, R. Rodriguez-Lugo, M.L. Araujo, W. Madden, L. Hernández, V. Lubes, Phys. Chem. Liq. 59, 969–981 (2021). https://doi.org/10.1080/00319104.2021.1888381

    Article  Google Scholar 

  18. L. Alderighi, P. Gans, A. Ienco, D. Peters, A. Sabatini, A. Vacca, Coord. Chem. Rev. Chem. Rev. 184, 311–318 (1999). https://doi.org/10.1016/S0010-8545(98)00260-4

    Article  Google Scholar 

  19. G.D. Fasman, Handbook of Biochemistry: Section D Physical Chemical Data, vol. 2 (CRC Press, Florida, 1976)

    Google Scholar 

  20. A.E. Martell, M. Smith, R.J. Motekaitis, NIST Critical Stability Constants of Metal Complexes Database (US Department of Commerce, Gaithersburg, 1993)

    Google Scholar 

  21. K.J. Powell, L.D. Pettit, IUPAC Stability Constants Database (Academic Software, Otley, 2013)

    Google Scholar 

  22. M.M. Khalil, A.E. Attia, J. Chem. Eng. Data 44, 180–184 (1999). https://doi.org/10.1021/je980185d

    Article  Google Scholar 

  23. D. Inci, R. Aydin. J. Sol. Chem., 43, 711–726 (2014). https://doi.org/10.1007/s10953-014-0157-4

  24. N. Turkel, C. Sahin. Chem. Pharm. Bull., 57, 694–699 (2009). https://doi.org/10.1248/cpb.57.694

  25. L. H. Abdel-Rahman, L. P. Bataglia, M. R. Mahmoud. Polyhedron, 15(2), 327–334 (1996). https://doi.org/10.1016/0277-5387(95)00157-N

  26. O. Yamauchi, A Odani. J. Am. Chem. Soc. 107, 5938–5945. https://doi.org/10.1021/ja00307a019

  27. S. Helmut, Angew. Chem. Int. Ed.. Chem. Int. Ed. 14, 394–402 (1975). https://doi.org/10.1002/anie.197503941

    Article  Google Scholar 

  28. D. Inci, R. Aydin, T. Sevgi, Y. Zorlu, E. Demirkan, J. Coord. Chem.Coord. Chem. 70, 512–543 (2017). https://doi.org/10.1080/00958972.2016.1267729

    Article  Google Scholar 

  29. J.E. Huheey, E.A. Keiter, R.L. Keiter, Química inorgánica principios de estructura y reactividad [Inorganic Chemistry: Principles of Structure and Reactivity] (Oxford University Press, Oxford, 2003). ((in Spanish))

    Google Scholar 

  30. D.S.Y. Gaelle, M.O. Agwara, D.M. Yufanyi, J. Nenwa, R. Jagan, Inorg. Nano-Met. 47, 618–625 (2017). https://doi.org/10.1080/15533174.2016.1212220

    Article  Google Scholar 

  31. S. Zhang, J. Zhou Coord. Chem. 61, 2488–2498 (2008). https://doi.org/10.1080/00958970801932605

    Article  ADS  Google Scholar 

  32. A. Kufenicki, M. Światek, M. Woźniczka, U. Kalinowska-Lis, J. Jezierska, J. Ochocki, J. Solut. Chem.Solut. Chem. 45, 28–41 (2016). https://doi.org/10.1007/s10953-015-0424-z

    Article  Google Scholar 

  33. S. Bunel, C. Ibarra, C.A. Bunton, Inorg. Nucl. Chem. Lett.. Nucl. Chem. Lett. 11, 213–217 (1975). https://doi.org/10.1016/0020-1650(75)80126-7

    Article  Google Scholar 

  34. T. Sakurai, O. Yamauchi, A. Nakahara, Chem. Soc. Jpn. 49, 1579–1584 (1976). https://doi.org/10.1246/bcsj.49.1579

    Article  Google Scholar 

  35. E. Prenesti, P.G. Daniele, S. Berto, S. Toso, Polyhedron 18, 3233–3241 (1999). https://doi.org/10.1016/S0277-5387(99)00279-X

    Article  Google Scholar 

  36. T. Murakami, T. Nozawa, M. Hatano, Chem. Soc. Jpn. 46, 2456–2459 (1973). https://doi.org/10.1246/bcsj.46.2456

    Article  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

WM: Experimental work and analysis. EC: Analysis and figures editing. MLA, LH, and VL: Analysis and writing the main manuscript. LE: Analysis of espectroscopic data

Corresponding author

Correspondence to Vito Lubes.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madden, W., del Carpio, E., Araujo, M.L. et al. Stability Constants of the Ternary Complexes Formed Between Copper(II), 1,10ʹ-Phenanthroline and Selected Amino Acids. Int J Thermophys 45, 4 (2024). https://doi.org/10.1007/s10765-023-03292-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03292-1

Keywords

Navigation