Skip to main content
Log in

The profinite completion of relatively hyperbolic virtually special groups

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We give a characterization of toral relatively hyperbolic virtually special groups in terms of the profinite completion. We also prove a Tits alternative for subgroups of the profinite completion Ĝ of a relatively hyperbolic virtually compact special group G and completely describe finitely generated pro-p subgroups of Ĝ. This applies to the profinite completion of the fundamental group of a hyperbolic arithmetic manifold. We deduce that all finitely generated pro-p subgroups of the congruence kernel of a standard arithmetic lattice of SO(n, 1) are free pro-p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. H. Bass, J. Milnor and J.-P. Serre, Solution of the congruence subgroup problem for SLn(n ≥ 3) and Sp2n(n ≥ 2), Institut des Hautes Études Scientifiques. Publications Mathématiques 33 (1967), 59–137.

    Article  MATH  Google Scholar 

  2. N. Bergeron, F. Haglund and D. Wise, Hyperplane sections in arithmetic hyperbolic manifolds, Journal of the London Mathematical Society 83 (2011), 431–448.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. R. Bridson, D. B. McReynolds, A. W. Reid and R. Spitler, Absolute profinite rigidity and hyperbolic geometry, Annals of Mathematics 192 (2020), 679–719.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. R. Bridson, D. B. McReynolds, A. W. Reid and R. Spitler, On the profinite rigidity of triangle groups, Bulletin of the London Mathematical Society 53 (2021), 1849–1862.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. R. Bridson and A. W. Reid, Profinite rigidity, fibering and the figure-eight knot, in What’s Next?—The Mathematical Legacy of William P. Thurston, Annals of Mathematics Studies, Vol. 205, Princeton University Press, Princeton, NJ, 2020, pp. 45–64.

    Chapter  Google Scholar 

  6. O. Cotton-Barratt, Detecting ends of residually finite groups in profinite completions, Mathematical Proceedings of the Cambridge Philosophical Society 155 (2013), 379–389.

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Einstein, Hierarchies for relatively hyperbolic virtually special groups, https://arxiv.org/abs/1903.12284.

  8. A. Genevois, Algebraic Characterisation of relatively hyperbolic special groups, Israel Journal of Mathematics 241 (2021), 301–341.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Haglund and D. Wise, Special cube complexes. Geometric and Functional Analysis 17 (2008), 1551–1620.

    Article  MathSciNet  MATH  Google Scholar 

  10. Y. Liu, Finite-volume hyperbolic 3-manifolds are almost determined by their finite quotient groups, Inventiones Mathematicae 231 (2023), 741–804.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. D. Long and A. W. Reid, Grothendieck’s problem for 3-manifold groups, Groups, Geometry and Dynamics 5 (2011), 479–499.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Lubotzky, Free quotients and the congruence kernel of SL2, Journal of Algebra 77 (1982), 411–418.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Lubotzky, Finite presentations of adelic groups, the congruence kernel and cohomology of finite simple groups, Pure and Applied Mathematics Quarterly 1 (2005), 241–256.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Ma and Z. Wang, Distinguishing 4-dimensional geometries via profinite completions, Geometriae Dedicata 216 (2022), Article no. 52.

  15. G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 17, Springer, Berlin, 1991.

    Book  MATH  Google Scholar 

  16. A. W. Mason, A. Premet, B. Sury and P. A. Zalesskii, The congruence kernel of an arithmetic lattice in a rank one algebraic group over a local field, Journal für die Reine und Angewandte Mathematik 623 (2008), 43–72.

    MathSciNet  MATH  Google Scholar 

  17. O. V. Melnikov, The congruence kernel of the group SL2(ℤ), Doklady Akademii Nauk SSSR 228 (1976), 1034–1036; English translation: Soviet Mathematics. Doklady 17 (1976), 867–870.

    MathSciNet  Google Scholar 

  18. A. Minasyan, Hereditary conjugacy separability of right angled Artin groups and its applications, Groups, Geometry, and Dynamics 6 (2012), 335–388.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Minasyan, Virtual Retraction Properties in groups, International Mathematics Research Notices 2021 (2021), 13434–13477.

    Article  MathSciNet  MATH  Google Scholar 

  20. N. Nikolov and D. Segal, On finitely generated profinite groups. II. Products in quasisimple groups, Annals of Mathematics 165 (2007), 239–273.

    Article  MathSciNet  MATH  Google Scholar 

  21. V. P. Platonov and A. S. Rapinchuk, Algebraic Groups and Number Theory, Pure and Applied Mathematics, Vol. 139, Academic Press, Boston, MA, 1994.

    Book  MATH  Google Scholar 

  22. G. Prasad and A. S. Rapinchuk, On the congruence kernel for simple algebraic groups, Proceedings of the Steklov Institute of Mathematics 292 (2016), 216–246.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. S. Raghunathan, On the congruence subgroup problem, Institut des Hautes Etudes Scientifiques. Publications Mathématiques 46 (1976) 107–161.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. S. Raghunathan, On the congruence subgroup problem. II, Inventiones Mathematicae 85 (1986), 73–117.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. S. Raghunatan, The congruence subgroup problem, Indian Academy of Sciences. Proceedings. Mathematical Sciences 114 (2004) 299–308.

    Article  MathSciNet  Google Scholar 

  26. L. Ribes, Profinite Graphs and Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 66, Springer, Cham, 2017.

    Book  MATH  Google Scholar 

  27. L. Ribes and P. Zalesskii, Pro-p trees and applications, in New Horizons in Pro-p Groups, Progress in Mathematics, Vol. 184, Birkhäuser, Boston, MA, 2000, pp. 75–119.

    Chapter  MATH  Google Scholar 

  28. L. Ribes and P. Zalesskii, Profinite Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 40, Springer, Berlin, 2010.

    Book  MATH  Google Scholar 

  29. D. Segal, Polycyclic Groups, Cambridge Tracts in Mathematics, Vol. 82, Cambridge University Press, Cambridge, 1983.

    Book  MATH  Google Scholar 

  30. M. Shusterman and P. Zalesskii, Virtual retraction and Howson’s theorem in pro-p-groups, Transaction of the American Mathematical Society 373 (2020), 1501–1527.

    Article  MathSciNet  MATH  Google Scholar 

  31. H. Sun, All finitely generated 3-manifold groups are Grothendieck rigid, Groups, Geometry, and Dynamics 17 (2023), 385–402.

    Article  MathSciNet  MATH  Google Scholar 

  32. Th. Weigel and P. A. Zalesskii, Virtually free pro-p products, Israel Journal of Mathematics 221 (2017), 425–434.

    Article  MathSciNet  MATH  Google Scholar 

  33. G. Wilkes, Profinite rigidity of graph manifolds and JSJ decompositions of 3-manifolds, Journal of Algebra 502 (2018), 538–587.

    Article  MathSciNet  MATH  Google Scholar 

  34. H. Wilton and P. A. Zalesskii, Distinguishing geometries using finite quotients, Geometry and Topology 21 (2017), 345–384.

    Article  MathSciNet  MATH  Google Scholar 

  35. H. Wilton and P. A. Zalesskii, Pro-p subgroups of profinite completions of 3-manifold groups, Journal of the London Mathematical Society 96 (2017), 293–308.

    Article  MathSciNet  MATH  Google Scholar 

  36. H. Wilton and P. A. Zalesskii, Profinite detection of 3-manifold decompositions, Compositio Mathematica 155 (2019), 246–259.

    Article  MathSciNet  MATH  Google Scholar 

  37. D. T. Wise, The structure of groups with a quasi-convex hierarchy, http://goo.gl/3ctNvX.

  38. P. A. Zalesskii. Profinite groups, without free nonabelian pro-p-subgroups, that act on trees. Matematicheskii Sbornik 181 (1990), 57–67.

    Google Scholar 

  39. P. A. Zalesskii, Profinite surface groups and the congruence kernel of arithmetic lattices in SL2(R), Israel Journal of Mathematics 146 (2005), 111–123.

    Article  MathSciNet  MATH  Google Scholar 

  40. P. A. Zalesskii and O. V. Mel’nikov, Subgroups of profinite groups acting on trees, Matematicheskii Sbornik 135 (1988), 419–439.

    Google Scholar 

  41. P. A. Zalesskii and O. V. Mel’nikov, Fundamental groups of graphs of profinite groups, Algebra i Analiz 1 (1989), 117–135.

    MathSciNet  Google Scholar 

Download references

Acknowledgments

I thank Andrei Rapinchuk for many valuable discussions on arithmetic groups.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Zalesskii.

Additional information

Partially supported by CNPq and FAPDF.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zalesskii, P. The profinite completion of relatively hyperbolic virtually special groups. Isr. J. Math. (2023). https://doi.org/10.1007/s11856-023-2584-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11856-023-2584-7

Navigation