Skip to main content
Log in

Notes on restriction theory in the primes

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study the mean \(\sum\nolimits_{x \in {\cal X}} {|\sum\nolimits_{p \le N} {{u_p}e(xp){|^\ell}}} \) when ℓ covers the full range [2, ∞) and \({\cal X} \subset \mathbb{R}/\mathbb{Z}\) is a well-spaced set, providing a smooth transition from the case ℓ = 2 to the case ℓ > 2 and improving on the results of J. Bourgain and of B. Green and T. Tao. A uniform Hardy–Littlewood property for the set of primes is established as well as a sharp upper bound for \(\sum\nolimits_{x \in {\cal X}} {|\sum\nolimits_{p \le N} {{u_p}e(xp){|^\ell}}}\) when \({\cal X}\) is small. These results are extended to primes in any interval in a last section, provided the primes are numerous enough therein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. E. Bombieri, Le grand crible dans la théorie analytique des nombres,Aastérisque 18 (1987).

  2. J. Bourgain, On Λ(p)-subsets of squares, Israel Journal of Mathematics 67 (1989), 291–311.

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Green, Roth’s theorem in the primes, Annals of Mathematics 161 (2005), 1609–1636.

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Green and T. Tao, Restriction theory of the Selberg sieve, with applications, Journal de Theorie des Nombres de Bordeaux 18 (2006), 147–182.

    MathSciNet  MATH  Google Scholar 

  5. B. Green and I. Z. Ruzsa, On the Hardy–Littlewood majorant problem, Mathematical Proceedings of the Cambridge Philosophical Society 137 (2004), 511–517.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Halberstam, D. R. Heath-Brown and H. E. Richert, Almost-primes in short intervals, Recent Progress in Analytic Number Theory. Vol. 1 (Durham 1979), Academic Press, London-New York, 1981, pp. 69–101.

    Google Scholar 

  7. A. J. Harper, Minor arcs, mean values, and restriction theory for exponential sums over smooth numbers, Compositio Mathematica 152 (2016), 1121–1158.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. J. Holt and J. D. Vaaler, The Beurling-Selberg extremal functions for a ball in euclidean space, Duke Mathematical Journal 83 (1996), 202–248.

    Article  MathSciNet  MATH  Google Scholar 

  9. H. L. Montgomery, The analytic principle of the large sieve, Bulletin of the American Mathematical Society 84 (1978), 547–567.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. L. Montgomery and R. C. Vaughan, Hilbert’s inequality, Journal of the London Mathematical Society 8 (1974), 73–82.

    Article  MathSciNet  MATH  Google Scholar 

  11. The PARI Group, Bordeaux, PARI/GP, Version 2.7.0, 2014, http://pari.math.u-bordeaux.fr/.

  12. O. Ramaré, On Šnirel’man’s constant, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze 21 (1995), 645–706.

    MATH  Google Scholar 

  13. O. Ramare, Arithmetical Aspects of the Large Sieve Inequality, Harish-Chandra Research Institute Lecture Notes, Vol. 1, Hindustan Book Agency, New Delhi, 2009.

    Google Scholar 

  14. O. Ramareand I. M. Ruzsa, Additive properties of dense subsets of sifted sequences, Journal de Theorie des Nombres de Bordeaux 13 (2001), 559–581.

    MathSciNet  MATH  Google Scholar 

  15. J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois Journal of Mathematics 6 (1962), 64–94.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Selberg, Collected Papers. Vol. II, Springer, Berlin, 1991.

    MATH  Google Scholar 

  17. J. D. Vaaler, Some extremal functions in Fourier analysis, Bulletin of the American Mathematical Society 12 (1985), 183–216.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. E. van Lint and H. E. Richert, On primes in arithmetic progressions, Acta Arithmetica 11 (1965), 209–216.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. C. Vaughan, The L1mean of exponential sums over primes, Bulletin of the London Mathematical Society 20 (1988), 121–123.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work has been completed when the author was enjoying the hospitality of the Hausdorff Research Institute for Mathematics in Bonn in June 2021.

Thanks are due to the referee for their careful reading and very helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Ramaré.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramaré, O. Notes on restriction theory in the primes. Isr. J. Math. (2023). https://doi.org/10.1007/s11856-023-2586-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11856-023-2586-5

Navigation