Skip to main content

Advertisement

Log in

Multiphase evolution of a Li-pegmatite field from the Tashisayi area, Altyn Tagh, NW China: insights from a petrological, geochemical, and geochronological study

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Tashisayi Li deposit was newly discovered in the eastern part of the Tashisayi batholith, located in the Altyn Tagh region of Northwest China. A Li-rich composite pegmatite-aplite dyke (γ02) displays superimposed relationships among different Li-bearing phases, including lepidolite-albite-quartz pegmatite (LAQ), spodumene-albite-quartz pegmatite (SAQ), and aplite. The timing and conditions of magmatism and Li mineralization in the Tashisayi remain enigmatic. The study involved field observations, U–(Th)–Pb dating of columbite-group minerals (CGM), zircon, and monazite, and geochemical analyses of CGM and quartz. U–Pb dating of CGM of the γ02 dyke revealed formation ages of 471.6±3.5 Ma (LAQ), 439.6±5.0 Ma (SAQ), and 416.3±4.8 Ma (aplite). Zircon U-Pb and monazite U-(Th)-Pb dating of biotite granite, pegmatitic aplite, and muscovite granite yielded ages of ca. 473 Ma, 439 Ma, and 425 Ma, respectively. The dating results indicate that the rare-metal pegmatites and granites in the Tashisayi area were emplaced during various periods from the Early Ordovician to Early Devonian, consistent with other rare-metal deposits in the Tugeman region. The textural and geochemical analyses on the CGM and quartz reveal that the LAQ, SAQ and aplite crystallized from highly evolved magmas under water-poor and relatively low temperature conditions, experiencing distinct evolution trend and forming processes. Additionally, both LAQ and SAQ were influenced by fluid or magma activities and the pegmatitic melt forming LAQ could enrich both Li and Sn. Extensive tectonic events in the Altyn Tagh Orogen, including ocean basin closure and continental collisions, promote the development of Li-rich granitic magmas. Thus, we argue that the multiple magmatic and Li mineralization events in the Tashisayi area are most likely originated from the melting of Proterozoic crustal materials, and the process was controlled by tectonic interactions between the Central Altyn, Southern Altyn, Northern Altyn, and Eastern Kunlun blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aldrich LT, Davis GL, Tilton GR, Wetherill GW (1956) Radioactive ages of minerals from the Brown Derby Mine and the Quartz Creek Granite near Gunnison, Colorado. J Geophys Res 61(2):215–232. https://doi.org/10.1029/JZ061i002p00215

    Article  Google Scholar 

  • Apollonov VN (1999) Mechanism and grow conditions of rhythmical-building crystals. Dokl Akad Nauk SSSR 364(1):94–96 (in Russian)

    Google Scholar 

  • Audétat A, Garbe-Schönberg D, Kronz A, Pettke T, Rusk B, Donovan JJ, Lowers HA (2014) Characterisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li, Fe, Mn, Ga and Ge. Geostand Geoanal Res 39:171–184

    Article  Google Scholar 

  • Badanina EV, Sitnikova MA, Gordienko VV, Melcher F, Gäbler HE, Lodziak J, Syritso LF (2015) Mineral chemistry of columbite-tantalite from spodumene pegmatite of Kolmozero, Kola Peninsula (Russia). Ore Geol Rev 64:720–735. https://doi.org/10.1016/j.oregeorev.2014.05.009

    Article  Google Scholar 

  • Ballouard C, Massuyeau M, Elburg MA, Tappe S, Viljoen F, Brandenburg JT (2020) The magmatic and magmatic-hydrothermal evolution of felsic igneous rocks as seen through Nb-Ta geochemical fractionation, with implications for the origins of rare-metal mineralization. Earth-Sci Rev 203:103115. https://doi.org/10.1016/j.earscirev.2020.103115

    Article  Google Scholar 

  • Beurlen H, Müller A, Silva D, Silva M (2011) Petrogenetic significance of LA-ICP-MS trace-element data on quartz from the Borborema Pegmatite Province, northeast Brazil. Mineral Mag 75:2703–2719. https://doi.org/10.1180/minmag.2011.075.5.2703

    Article  Google Scholar 

  • Bradley DC, McCauley AD, Stillings LL (2017) Mineral-deposit model for lithium-cesium-tantalum pegmatites. In: Scientific Investigations Report (No. 2010-5070-O). US Geological Survey, New York. https://doi.org/10.3133/sir20105070

    Chapter  Google Scholar 

  • Breiter K, Ackerman L, Ďurišová J, Svojtka M, Novák M (2014) Trace element composition of quartz from different types of pegmatites: a case study from the Moldanubian Zone of the Bohemian Massif (Czech Republic). Mineral Mag 78:703–722. https://doi.org/10.1180/minmag.2014.078.3.17

    Article  Google Scholar 

  • Breiter K, Ďurišová J, Dosbaba M (2017a) Quartz chemistry-a step to understanding magmatic-hydrothermal processes in ore-bearing granites: Cínovec/Zinnwald Sn-W-Li deposit, Central Europe. Ore Geol Rev 90:25–35. https://doi.org/10.1016/j.oregeorev.2017.10.013

    Article  Google Scholar 

  • Breiter K, Ďurišová J, Dosbaba M (2020) Chemical signature of quartz from S- and A-type rare-metal granites – a summary. Ore Geol Rev 125:103674. https://doi.org/10.1016/j.oregeorev.2020.103674

    Article  Google Scholar 

  • Breiter K, Ďurišová J, Hrstka T et al (2017b) Assessment of magmatic vs. metasomatic processes in rare-metal granites: a case study of the Cínovec/Zinnwald Sn-W-Li deposit, Central Europe. Lithos 292:198–217. https://doi.org/10.1016/j.lithos.2017.08.015

    Article  Google Scholar 

  • Cao Y, Liu L, Wang C, Kang L, Li D, Yang WQ, Zhu XH (2019) Timing and nature of the partial melting processes during the exhumation of garnet–bearing biotite gneiss in the southern Altyn Tagh HP/UHP belt, Western China. J Asian Earth Sci 170:274–293. https://doi.org/10.1016/j.jseaes.2018.11.005

    Article  Google Scholar 

  • Černý P, Ercit TS (2005) The classification of granitic pegmatites revisited. Can Mineral 43:2005–2026. https://doi.org/10.2113/gscanmin.43.6.2005

    Article  Google Scholar 

  • Che XD, Wang RC, Wu FY et al (2019) Episodic Nb–Ta mineralization in South China: constraints from in situ LA–ICP–MS columbite-tantalite U–Pb dating. Ore Geol Rev 105:71–85. https://doi.org/10.1016/j.oregeorev.2018.11.023

    Article  Google Scholar 

  • Che XD, Wu FY, Wang RC, Gerdes A, Ji WQ, Zhao ZH, Yang JH, Zhu ZY (2015) In situ U–Pb isotopic dating of columbite–tantalite by LA–ICP–MS. Ore Geol Rev 65:979–989. https://doi.org/10.1016/j.oregeorev.2014.07.008

    Article  Google Scholar 

  • Cottle JM, Searle MP, Jessup MJ, Crowley JL, Law RD (2015) Rongbuk re-visited: geochronology of leucogranites in the footwall of the South Tibetan Detachment System, Everest Region, Southern Tibet. Lithos 227:94–106. https://doi.org/10.1016/j.lithos.2015.03.019

    Article  Google Scholar 

  • Crofu F, Hanchar JM, Hoskin PWO et al (2003) Atlas of zircon textures. Rev Mineral Geochem 53:469–495

    Article  Google Scholar 

  • Dai H, Wang D, Liu L, Yu Y, Dai JJ (2019) Geochronology and geochemistry of Li (Be)-bearing granitic pegmatites from the Jiajika super large Li-polymetallic deposit in Western Sichuan, China. J Earth Sci 30:707–727. https://doi.org/10.1007/s12583-019-1011-9

    Article  Google Scholar 

  • Deveaud S, Gumiaux C, Gloaguen E, Branquet Y (2013) Spatial statistical analysis applied to rare-element LCT-type pegmatite fields: an original approach to constrain faults-pegmatites-granites relationships. J Geosci 58:163–182. https://doi.org/10.3190/jgeosci.141

    Article  Google Scholar 

  • Deveaud S, Millot R, Villaros A (2015) The genesis of LCT-type granitic pegmatites, as illustrated by lithium isotopes in micas. Chem Geol 411:97111. https://doi.org/10.1016/j.chemgeo.2015.06.029

    Article  Google Scholar 

  • Ercit TS (1986) The Simpsonite paragenesis. The crystal chemistry and geochemistry of extreme Ta fractionation. Dissertation, University of Manitoba, Manitoba, pp 3–6. https://doi.org/10.13140/2.1.1036.0647

    Book  Google Scholar 

  • Fei GC, Menuge J, Li Y et al (2020a) Petrogenesis of the Lijiagou spodumene pegmatites in Songpan-Garze Fold Belt, West Sichuan, China: evidence from geochemistry, zircon, cassiterite and coltan U Pb geochronology and Hf isotopic compositions. Lithos 364:105555. https://doi.org/10.1016/j.lithos.2020.105555

    Article  Google Scholar 

  • Fei GC, Yang Z, Yang JY et al (2020b) New precise timing constraint for the Dangba granitic pegmatite type rare-metal deposit, Markam, Sichuan Province, evidence from cassiterite LA-MC-ICP-MS U-Pb dating. Acta Geol Sin 94(3):836–849 (in Chinese with English abstract). https://doi.org/10.3724/SP.J.0001-571720200314

    Article  Google Scholar 

  • Fosso Tchunte PM, Tchameni R, André-Mayer AS, Dakoure HS, Turlin FPM, Nomo EN, Saha Fouotsa AN, Rouer O (2018) Evidence for Nb-Ta occurrences in the syn-tectonic Pan-African Mayo Salah leucogranite (Northern Cameroon): constraints from Nb-Ta oxide mineralogy, geochemistry and U-Pb LA-ICP-MS geochronology on columbite and monazite. Minerals 8:188. https://doi.org/10.3390/min8050188

    Article  Google Scholar 

  • Frelinger SN, Ledvina MD, Kyle JR, Zhao D (2015) Scanning electron microscopy cathodoluminescence of quartz: principles, techniques and applications in ore geology. Ore Geol Rev 65:840–852. https://doi.org/10.1016/j.oregeorev.2014.10.008

    Article  Google Scholar 

  • Fu S, Lan Q, Yan J (2020) Trace element chemistry of hydrothermal quartz and its genetic significance: a case study from the Xikuangshan and Woxi giant Sb deposits in southern China. Ore Geol Rev 126:103732. https://doi.org/10.1016/j.oregeorev.2020.103732

    Article  Google Scholar 

  • Gao D (2022) Petrogenesis and tectonic implications of the Early Paleozoic granitoids from South Altun. Dissertation, China University of Geosciences (Wuhan), Wuhan, pp 105–110

    Google Scholar 

  • Gao K, Shi G, Wang M, Xie G, Wang J, Zhang X, Liu Y (2019) The Tashisayi nephrite deposit from South Altyn Tagh, Xinjiang, Northwest China. Geosci Front 10:1597–1612. https://doi.org/10.1016/j.gsf.2018.10.008

    Article  Google Scholar 

  • Gao YB, Zhao X, Bagas L et al (2021) Newly discovered Ordovician Li-Be deposits at Tugeman in the Altyn Tagh Orogen, NW China. Ore Geol Rev 139:104515. https://doi.org/10.1016/j.oregeorev.2021.104515

    Article  Google Scholar 

  • Garate-Olave I, Müller A, Roda-Robles E, Gil-Crespo PP, Pesquera A (2017) Extreme fractionation in a granite–pegmatite system documented by quartz chemistry: the case study of Tres Arroyos (Central Iberian Zone, Spain). Lithos 286:162–174. https://doi.org/10.1016/j.lithos.2017.06.009

    Article  Google Scholar 

  • Geisler T, Schaltegger U, Tomaschek F (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements 3:43–50. https://doi.org/10.2113/gselements.3.1.43

    Article  Google Scholar 

  • Gonçalves GO, Lana C, Scholz R Buick IS et al (2017) The Diamantina Monazite: a new low-Th reference material for microanalysis. Geostand Geoanal Res 42:25–47. https://doi.org/10.1111/ggr.12192

  • González TL, Polonio FG, Moro FJL, Fernández AF, Contreras JLS, Benito MCM (2017) Tin-tantalum-niobium mineralization in the Penouta deposit (NW Spain): textural features and mineral chemistry to unravel the genesis and evolution of cassiterite and columbite group minerals in a peraluminous system. Ore Geol Rev 81:79–95. https://doi.org/10.1016/j.oregeorev.2016.10.034

    Article  Google Scholar 

  • Hong T, Zhai MG, Xu XW et al (2021a) Tourmaline and quartz in the igneous and metamorphic rocks of the Tashisayi granitic batholith, Altyn Tagh, northwestern China: geochemical variability constraints on metallogenesis. Lithos 400 106358–401. https://doi.org/10.1016/j.lithos.2021.106358

  • Hong W, Cooke DR, Zhang L et al (2021b) The formation of magmatic-hydrothermal features in Sn-mineralized and barren Tasmanian intrusions, Southeast Australia: insights from quartz textures, trace elements, and microthermometry. Econ Geol 116(8):1917–1948. https://doi.org/10.5382/econgeo.4853

    Article  Google Scholar 

  • Horstwood MSA, Košler J, Gehrels G et al (2016) Community-derived standards for LA-ICP-MS U-(Th-)Pb geochronology – uncertainty propagation, age interpretation and data reporting. Geostand Geoanal Res 40:311–332. https://doi.org/10.1111/j.1751-908X.2016.00379.x

  • Huang R, Audétat A (2012) The titanium-in-quartz (TitaniQ) thermobarometer: a critical examination and re-calibration. Geochim Cosmochim Acta 84:5–89. https://doi.org/10.1016/j.gca.2012.01.009

    Article  Google Scholar 

  • Huang XL, Wang RC, Chen XM et al (2002) Vertical variations in the mineralogy of the Yichun Topaz Lepidolite Granite, Jiangxi Province, Southern China. Can Mineral 40:1047–1068. https://doi.org/10.2113/gscanmin.40.4.1047

    Article  Google Scholar 

  • Hulsbosch N, Hertogen J, Dewaele S, André L, Muchez P (2014) Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups. Geochim Cosmochim Acta 132:350–374. https://doi.org/10.1016/j.gca.2014.02.006

    Article  Google Scholar 

  • Jacob JB, Moyen JF (2021) Granite and Related Rocks. In: Alderton D, Elias SA (eds) Encyclopedia of Geology, 2nd edn. Academic Press, Oxford, pp 170–183

    Google Scholar 

  • Jiang SY, Wang CL, Zhang L, Yuan F, Su HM, Zhang HX, Liu T (2021) In situ trace element tracing and isotopic dating of pegmatite type lithium deposits: an overview. Acta Geol Sin 95(10):3017–3038 (in Chinese with English abstract)

    Google Scholar 

  • Kaeter D, Barros R, Menuge JF, Chew DM (2018) The magmatic-hydrothermal transition in rare-element pegmatites from southeast Ireland: LA-ICP-MS chemical mapping of muscovite and columbite-tantalite. Geochim Cosmochim Acta 240:98–130. https://doi.org/10.1016/j.gca.2018.08.024

    Article  Google Scholar 

  • Larsen RB, Henderson I, Ihlen PM, Jacamon F (2004) Distribution and petrogenetic behaviour of trace elements in granitic pegmatite quartz from South Norway. Contrib Mineral Petrol 147:615–628. https://doi.org/10.1007/s00410-004-0580-4

    Article  Google Scholar 

  • Li CM (2009) A review on the minerageny and situ microanalytical dating techniques of zircons. Geological survey and research 33(3):161–174 (in Chinese with English abstract)

    Google Scholar 

  • Li H, Hong T, Liu SK et al (2023) Characteristics of early Paleozoic granite-pegmatite and associated lithium-beryllium mineralization in the Tugeman area, Altun orogenic system, northwestern China. Ore Geol Rev 160:105603. https://doi.org/10.1016/j.oregeorev.2023.105603

    Article  Google Scholar 

  • Li H, Hong T, Yang ZQ, Liu SK, Wang XH, Ma YC, Niu Lei XXW (2022) Multi-stage magmatism-mineralization and tectonic setting of the North Tugeman granitic pegmatite lithium-beryllium deposit in the middle of Altyn Tagh. Acta Petrol Sin 38(10):3085–3103. https://doi.org/10.18654/1000-0569/2022.10.12

    Article  Google Scholar 

  • Li H, Hong T, Yang ZQ et al (2020) Comparative studying on zircon, cassiterite and coltan U-Pb dating and 40Ar/39Ar dating of muscovite rare-metal granitic pegmatites-a case study of the Northern Tugeman lithium-beryllium deposit in the middle of Altyn Tagh. Acta Petrol Sin 36:2869–2892 (in Chinese with English abstract). https://doi.org/10.18654/1000-0569/2020.09.16

    Article  Google Scholar 

  • Liang X, Xu YJ, Zi JW, Zhang HC, Du YS (2022) Genetic mineralogy of monazite and constraints on interpretation of U-Th-Pb ages. Earth Sci 47(4):1383–1398. https://doi.org/10.3799/dqkx.2021.157

    Article  Google Scholar 

  • Linnen R, Cuney M (2005) Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization. Rare-element geochemistry and mineral deposits. Short Course Notes Geol Can 17:45–67

    Google Scholar 

  • Liu L, Chen DL, Zhang AD, Sun Y, Wang Y, Yang JX, Luo JH (2005) Ultrahigh pressure gneissic K-feldspar garnet clinopyroxenite in the Altyn Tagh, NW China Evidence from clinopyroxene exsolution in garnet. Sci China 48:1000–1010

    Article  Google Scholar 

  • Liu L, Wang C, Cao YT, Chen DL, Kang L, Yang WQ, Zhu XH (2012) Geochronology of multi-stage metamorphic events Constraints on episodic zircon growth from the UHP eclogite in the South Altyn, NW China. Lithos 136–139:10–26. https://doi.org/10.1016/j.lithos.2011.09.014

    Article  Google Scholar 

  • Liu X, Wu F, Yu L, Liu Z, Ji W, Wang J (2016) Emplacement age of leucogranite in the Kampa Dome, southern Tibet. Tectonophysics 667:163–175. https://doi.org/10.1016/j.tecto.2015.12.001

    Article  Google Scholar 

  • Liu Y, Hu Z, Gao S, Gunther D, Xu J, Gao CH, Chen HH (2008) In situ analysis of major and trace elements of anhydrous minerals by LA–ICP–MS without applying an internal standard. Chem Geol 257:34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004

    Article  Google Scholar 

  • Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB (2010) Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J Petrol 51(1–2):537–571. https://doi.org/10.1093/petrology/egp082

    Article  Google Scholar 

  • Liu ZC, Wu FY, Qiu ZL et al (2017) Leucogranite geochronological constraints on the termination of the South Tibetan detachment in eastern Himalaya. Tectonophysics 721:106–122. https://doi.org/10.1016/j.tecto.2017.08.019

    Article  Google Scholar 

  • London D (2008) Pegmatites, vol 10. Canadian Mineralogist Special Publication, p 368

    Google Scholar 

  • London D (2014) A petrologic assessment of internal zonation in granitic pegmatites. Lithos 184:74–104. https://doi.org/10.1016/j.lithos.2013.10.025

    Article  Google Scholar 

  • London D (2018) Ore-forming processes within granitic pegmatites. Ore Geol Rev 101:349–383. https://doi.org/10.1016/j.oregeorev.2018.04.020

    Article  Google Scholar 

  • London D, Evensen JM, Fritz E, Icenhower JP, Morgan GB, Wolf MB (2001) Enrichment and accommodation of manganese in granite-pegmatite systems. 11th An VM Goldschmidt Conf Abstr 3369 (lunar and Planetary Institute, Houston)

  • London D, Morgan GBVI (2017) Experimental crystallization of the Macusani Obsidian, with applications to lithium-rich granitic pegmatites. J Petrol 58:1005–1030. https://doi.org/10.1093/petrology/egx044

    Article  Google Scholar 

  • Ludwig KR (2003a) Mathematical–statistical treatment of data and errors for 230Th/U geochronology. Rev Mineral Geochem 52(1):631–656. https://doi.org/10.2113/0520631

    Article  Google Scholar 

  • Ludwig KR (2003b) ISOPLOT 3.00: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, California, Berkeley, p 39

    Google Scholar 

  • Luo MF (2015) Early Paleozoic and Early Mesozoic granitoids in the eastern section of East Kunlun and their tectonic significance. China University of Geosciences, Beijing

    Google Scholar 

  • Maydagán L, Franchini M, Rusk B, Lentz DR, McFarlane C, Impiccini A, Ríos FJ, Rey R (2015) Porphyry to epithermal transition in the Altar Cu-(Au-Mo) deposit, Argentina, studied by cathodoluminescence, LA-ICP-MS, and fluid inclusion analysis. Econ Geol 110:889–923. https://doi.org/10.2113/econgeo.110.4.889

    Article  Google Scholar 

  • Melcher F, Graupner T, Gäbler HE, Schütte P (2015) Tantalum–(niobium–tin) mineralization in African pegmatites and rare metal granites: constraints from Ta–Nb oxide mineralogy, geochemistry and U–Pb geochronology. Ore Geol Rev 64:667–719. https://doi.org/10.1016/j.oregeorev.2013.09.003

  • Melleton J, Gloaguen E, Frei D, Milan N, Breiter K (2013) How are the emplacement of the rare-element pegmatites, regional metamorphism and magmatism interrelated in the Moldanubian domain of the Variscan Bohemian Massif, Czech Republic? Can Mineral 50(6):1751–1773. https://doi.org/10.3749/canmin.50.6.1751

    Article  Google Scholar 

  • Meng LT, Chen BL, Wang Y, Sun Y, Wu Y, Zhang WG, He JT (2016) Timing of Early Paleozoic tectonic regime transition in North Altun: evidence from granite. Geotecton Metallog 40(2):295–307 (in Chinese with English abstract)

    Google Scholar 

  • Meng LT, Chen BL, Zhao NN (2017) The distribution, geochronology, and geochemistry of early Paleozoic granitoid plutons in the North Altun orogenic belt, NW China: implications for the petrogenesis and tectonic evolution. Lithos 268:399–417. https://doi.org/10.1016/j.lithos.2016.10.022

    Article  Google Scholar 

  • Mulja T, Williams-Jones AE, Martin RF, Wood SA (1996) Compositional variation and structural state of columbite-tantalite in rare-element granitic pegmatites of the Preissac-Lacorne Batholith, Quebec, Canada. Am Mineral 81:146–157. https://doi.org/10.2138/am-1996-1-219

    Article  Google Scholar 

  • Müller A, Keyser W, Simmons WB, Webber K, Wise M, Beurlen H, Garate-Plave I, Roda-Robles E, Ángel Galliski M (2021) Quartz chemistry of granitic pegmatites: implications for classification, genesis and exploration. Chem Geol 584:120507. https://doi.org/10.1016/j.chemgeo.2021.120507

    Article  Google Scholar 

  • Müller A, Wanvik JE, Ihlen PM (2012) Petrological and chemical characterisation of high-purity quartz deposits with examples from Norway. In: Gotze J, Mockel R (eds) Quartz: deposits, mineralogy and analytics, 1st edn. Springer Geology, pp 71–118

    Chapter  Google Scholar 

  • No. 3 Geological Party, Xinjiang Bureau of Geology and Mineral Exploration and Development (2022) The survey project of lithium beryllium, gold and copper deposits in Ayak-Baozigou, Ruoqiang County. Xinjiang, Formal report (in Chinese)

  • Osborne Z, Thomas J, Nachlas W et al (2022) TitaniQ revisited: expanded and improved Ti-in-quartz solubility model for thermobarometry. Contrib Mineral Petrol 177. https://doi.org/10.1007/s00410-022-01896-8

  • Partington G, McNaughton N, Williams I (1995) A review of the geology, mineralization, and geochronology of the Greenbushes Pegmatite, Western Australia. Econ Geol 90:616–635. https://doi.org/10.2113/gsecongeo.90.3.616

    Article  Google Scholar 

  • Patiño Douce AE, Beard JS (1995) Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15kbar. J Petrol 36(3):707–738

    Article  Google Scholar 

  • Patiño Douce AE, McCarthy TC (1998) Melting of crustal rocks during continental collision and subduction. In: Hacker BR, Liou JG (eds) When continents collide: geodynamics and geochemistry of ultrahigh-pressure rocks. Springer, Dordrecht, pp 27–55

    Chapter  Google Scholar 

  • Potrafke A, Breiter K, Ludwig T, Neuser RD, Stalder R (2020) OH defects in quartz: application to igneous bodies from the Erzgebirge. Phys Chem Miner 47:24

    Article  Google Scholar 

  • Rusk B (2012) Cathodoluminescent textures and trace elements in hydrothermal quartz. In: Götze J, Möckel R (eds) Quartz: deposits, mineralogy and analytics. Springer Geology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22161-3_14

    Chapter  Google Scholar 

  • Rusk B, Koenig A, Lowers H (2011) Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation-inductively coupled plasma-mass spectrometry. Am Mineral 96:703–708. https://doi.org/10.2138/am.2011.3701

    Article  Google Scholar 

  • Schärer U (1984) The effect of initial 230Th disequilibrium on young U–Pb ages: the Makalu case, Himalaya. Earth Planet Sci Lett 67:191–204

    Article  Google Scholar 

  • Shaw R, Goodenough K, Roberts N, Roberts NMW, Horstwood MSA, Chenery SR, Gunn AG (2016) Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes: a case study from the Lewisian Gneiss Complex of north-west Scotland. Precambrian Res 281:338–362. https://doi.org/10.1016/j.precamres.2016.06.008

    Article  Google Scholar 

  • Thompson J, Meffre S, Danyushevsky L (2018) Impact of air, laser pulse width and fluence on U-Pb dating of zircons by LA-ICPMS. J Anal At Spectrom 33:221–230

    Article  Google Scholar 

  • Tindle A, Breaks F (1998) Oxide minerals from the Separation Rapids rare-element granitic pegmatite group, Northwestern Ontario. Can Mineral 36:609–635

    Google Scholar 

  • Trueman DL, Černý P (1982) Exploration for rare element granitic pegmatites. In: Černý P (ed) Granitic pegmatites in science and industry, vol 8. Mineralogical Association of Canada Short Course Handbook, pp 463–493

    Google Scholar 

  • US Geological Survey (2023) Mineral commodity summaries 2023. U.S. Geological Survey Report 210. https://doi.org/10.3133/mcs2023

    Book  Google Scholar 

  • Van Lichtervelde M, Holtz F, Melche F (2018) The effect of disequlibrium crystallizatioin on Nb-Ta fractionation in pegmatites: constraints from crystallization experiments of tantalite-tapiolite. Am Mineral 103:1401–1416

    Article  Google Scholar 

  • Wang C, Liu L, Yang WQ, Zhu XH, Cao YT, Kang L, He SP (2013) Provenance and ages of the Altyn complex in Altyn Tagh: implications for the early Neoproterozoic evolution of northwestern China. Precambrian Res 230:193–208. https://doi.org/10.1016/j.precamres.2013.02.003

    Article  Google Scholar 

  • Wang CM, Tang HS, Zheng Y, Dong LH, Qu X (2019) Early Paleozoic magmatism and metallogeny related to Proto-Tethys subduction: insights from volcanic rocks in the northeastern Altyn Mountains, NW China. Gondwana Res 75:134–153. https://doi.org/10.1016/j.gr.2019.04.009

    Article  Google Scholar 

  • Wark DA, Watson EB (2006) TitaniQ: a titanium-in-quartz geothermometer. Contrib Mineral Petrol 152:743–754. https://doi.org/10.1007/s00410-006-0132-1

    Article  Google Scholar 

  • Wei CJ, Zhu WP (2016) Granulite facies metamorphism and petrogenesis of granite (I): metamorphic phase equilibria for HTUHT metapelites/greywackes. Acta Petrol Sin 32(6):1611–1624 (in Chinese with English abstract)

    Google Scholar 

  • Wiedenbeck M, Allé P, Corfu F et al (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and ree analyses. Geostand Newslett 19:1–23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x

    Article  Google Scholar 

  • Wu FY, Liu ZC, Liu XC, Ji WQ (2015) Himalayan leucogranite: petrogenesis and implications to orogenesis and plateau uplift. Acta Petrol Sin 31:1–36 (in Chinese with English abstract)

    Google Scholar 

  • Wu Y, Chen ZL, Chen BL, Wang Y, Meng LT, He JO, Wang B, Han MM (2017) Geochemistry, Zircon SHRIMP U-Pb dating and Hf isotopic compositions of the monzogranite from the Southern Kaladawan of North Altyn and their implications for crust-mantle interaction. Acta Geol Sin 91(6):1227–1243 (in English with Chinese abstract)

    Google Scholar 

  • Wu Y, Chen ZL, Chen BL, Wang Y, Meng LT, He JT, Han MM, Wang B (2016) Geochronological and geochemical characteristics of the deformed diorite from the North Altyn brittle-ductile shear zone and its constraint on the Early Paleozoic tectonic evolution of the North Altyn Tagh. Acta Petrol Sin 32(2):555–570 (in English with Chinese abstract)

    Google Scholar 

  • Wu Y, Chen ZL, Chen BL, Wang Y, Sun Y, Meng LT, He JT, Wang B (2021) Early Palaeozoic syn-collisional granitic magmatism in the North Altun and its implication for accretionary orogenic processes. Acta Petrol Sin 37(5):1321–1346

    Article  Google Scholar 

  • Xie J, Qiu H, Bai X et al (2018) Geochronological and geochemical constraints on the Cuonadong leucogranite, eastern Himalaya. Acta Geochim 37:347–359. https://doi.org/10.1007/s11631-018-0273-8

    Article  Google Scholar 

  • Xiong YQ, Jiang SY, Wen CH, Yu HY (2020) Granite–pegmatite connection and mineralization age of the giant Renli TaNb deposit in South China: constraints from U–Th–Pb geochronology of coltan, monazite, and zircon. Lithos 358:105422. https://doi.org/10.1016/j.lithos.2020.105422

    Article  Google Scholar 

  • Xu X, Hong T, Li H, Niu L, Ke Q, Chen JZ, Liu SK, Zhai MG (2020) Concept of high-temperature granite-pegmatite Li-Be metallogenic system with a primary study in the middle Altyn-Tagh. Acta Petrol Sin 36(12):3572–3592 (in Chinese with English abstract). https://doi.org/10.18654/1000-0569/2020.12.02

    Article  Google Scholar 

  • Xu XW, Li H, Shi FP, Yao FJ, Chen JZ, Yang ZQ, Hong T, Ke Q (2019) Metallogenic characteristics and prospecting of granitic pegmatite-type rare metal deposits in the Tugeman area, Middle Altyn Tagh. Acta Petrol Sin 35:3303–3316 (in Chinese with English abstract). https://doi.org/10.18654/1000-0569/2019.11.03

    Article  Google Scholar 

  • Xu ZQ, Yang JS, Ji SC et al (2010) On the continental tectonics and dynamics of China. Acta Geol Sin 84(1):1–29 (in Chinese with English abstract)

    Article  Google Scholar 

  • Ying Y, Chen W, Lu J, Jiang S, Yang Y (2017) In situ U–Th–Pb ages of the Miaoya carbonatite complex in the South Qinling orogenic belt, Central China. Lithos 290:159–171

    Article  Google Scholar 

  • Yu SY, Zhang JX, Li SZ, Sun DY, Peng YB, Zhao XL (2017) Continuity of the North Qilian and North Altun orogenic belts of NW China: evidence from newly discovered Palaeozoic low-Mg and high-Mg adakitic rocks. Geol Mag 155:1684–1704. https://doi.org/10.1017/S0016756817000565

    Article  Google Scholar 

  • Yu SY, Zhang JX, Li SZ et al (2018) Continuity of the North Qilian and North Altun Orogenic Belts of NW China: evidence from newly discovered Palaeozoic low Mg and high–Mg Adakitic rocks. Geol Mag 155(3):16841704

    Google Scholar 

  • Zhai MG, Wu FY, Hu RZ et al (2019) Critical metal mineral resources: current research status and scientific issues. Bull Nat Nat Sci Found China 2:106–111 (in Chinese with English abstract)

    Google Scholar 

  • Zhang AC, Wang RC, Hu H et al (2004) Chemical evolution of Nb-Ta oxides and zircon from the Koktokay No. 3 granitic pegmatite, Altai, northwestern China. Mineral Mag 68:739–756. https://doi.org/10.1180/0026461046850216

    Article  Google Scholar 

  • Zhang J, Meng FC, Yu S, Chen W, Chen SY (2007) 39Ar-40Ar geochronology of high-pressure/low-temperature blueschist and eclogite in the North Altyn Tagh and their tectonic implications. Geol China 34:558–564

    Google Scholar 

  • Zhang JX, Meng FC, Yu SY (2010) Two contrasting HP/LT and UHP metamorphic belts: constraint on early Paleozoic orogeny in Qilian-Altun orogen. Acta Petrol Sin 26(7):1967–1992 (in Chinese with English abstract)

    Google Scholar 

  • Zheng K, Wu CL, Wu D, Gao D, Chen HJ, Xu N (2019) Petrogenesis of the Kazisayi monzogranite from North Altun and its tectonic implications. Acta Geol Sin-Engl 93(10):2531–2541 (in Chinese with English abstract)

    Google Scholar 

  • Zhou JH, Feng CY, Li DX, Wang H, Zhang MY, Li GC, Wang ZZ (2017) Petrology, geochronology and geochemistry of metallogenetic granite in Baiganhu W-Sn deposit. East Kunlun Acta Petrol Sin 31(03):2277–2293

    Google Scholar 

  • Zhou QF, Qin KZ, Tang D, Tian Y, Cao MJ, Wang CL (2015) Formation age and evolution time span of the Koktokay No. 3 pegmatite, Altai, NW China: evidence from U-Pb Zircon and 40 Ar- 39 Ar muscovite ages. Resour Geol 65:10–231. https://doi.org/10.1111/rge.12067

    Article  Google Scholar 

  • Zhou QF, Qin KZ, Tang DM (2021) Mineralogy of columbite-group minerals from the rare-element pegmatite dykes in the East-Qinling orogen, central China: implications for formation times and ore genesis. J Asian Earth Sci 218:104879. https://doi.org/10.1016/j.jseaes.2021.104879

    Article  Google Scholar 

  • Zong K, Klemd R, Yuan Y et al (2017) The assembly of Rodinia: the correlation of early Neoproterozoic (ca. 900Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB). Precambrian Res 290:32–48. https://doi.org/10.1016/j.precamres.2016.12.010

    Article  Google Scholar 

  • Zou XY, Jiang JL, Qin KZ, Zhang YG, Yang W, Li XH (2022) Progress in the principle and application of zircon trace element. Acta Petrol Sin 37(4):985–999. https://doi.org/10.18654/1000-0569/2021.04.03

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to Shuang-Rong Zhang, Jiang-Song Chen and Xiang-Jing Yu for the sample preparation, as well as Xiao-Ping Xia, Jia-Lin Wang, Li-Hui Jia, Jiang-Yan Yuan and Zong-Rao Tai for the laboratory assistance. We also thank Pete Hollings and Robert Trumbull for their suggestive comments.

Funding

This research was jointly supported by the National Natural Science Foundation of China (Grant Number 42250202), second comprehensive scientific investigation of the Qinghai-Tibet Plateau (2019QZKK0802), the National Key R&D Program of China (2018YFA0702600), the Guangdong Province Introduced Innovative R&D Team of Big Data—Mathematical Earth Sciences and Extreme Geological Events Team (2021ZT09H399), and Key development projects of the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS-201902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Hong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Editorial handling: M. Harlaux

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 2220 kb)

ESM 2

(XLSX 107 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, YC., Xu, XW., Hong, T. et al. Multiphase evolution of a Li-pegmatite field from the Tashisayi area, Altyn Tagh, NW China: insights from a petrological, geochemical, and geochronological study. Miner Deposita (2023). https://doi.org/10.1007/s00126-023-01237-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00126-023-01237-0

Keywords

Navigation