Skip to main content
Log in

Inclusion Matrices for Rainbow Subsets

  • Original Paper
  • Published:
Bulletin of the Iranian Mathematical Society Aims and scope Submit manuscript

Abstract

Let \(\text {S}\) be a finite set, each element of which receives a color. A rainbow t-set of \(\text {S}\) is a t-subset of \(\text {S}\) in which different elements receive different colors. Let \(\left( {\begin{array}{c}\text {S}\\ t\end{array}}\right) \) denote the set of all rainbow t-sets of \(\text {S}\), let \(\left( {\begin{array}{c}\text {S}\\ \le t\end{array}}\right) \) represent the union of \(\left( {\begin{array}{c}\text {S}\\ i\end{array}}\right) \) for \(i=0,\ldots , t\), and let \(2^\text {S}\) stand for the set of all rainbow subsets of \(\text {S}\). The rainbow inclusion matrix \(\mathcal {W}^{\text {S}}\) is the \(2^\text {S}\times 2^{\text {S}}\) (0, 1) matrix whose (TK)-entry is one if and only if \(T\subseteq K\). We write \(\mathcal {W}_{t,k}^{\text {S}}\) and \(\mathcal {W}_{\le t,k}^{\text {S}}\) for the \(\left( {\begin{array}{c}\text {S}\\ t\end{array}}\right) \times \left( {\begin{array}{c}\text {S}\\ k\end{array}}\right) \) submatrix and the \(\left( {\begin{array}{c}\text {S}\\ \le t\end{array}}\right) \times \left( {\begin{array}{c}\text {S}\\ k\end{array}}\right) \) submatrix of \(\mathcal {W}^{\text {S}}\), respectively, and so on. We determine the diagonal forms and the ranks of \(\mathcal {W}_{t,k}^{\text {S}}\) and \(\mathcal {W}_{\le t,k}^{\text {S}}\). We further calculate the singular values of \(\mathcal {W}_{t,k}^{\text {S}}\) and construct accordingly a complete system of \((0,\pm 1)\) eigenvectors for them when the numbers of elements receiving any two given colors are the same. Let \(\mathcal {D}^{\text {S}}_{t,k}\) denote the integral lattice orthogonal to the rows of \(\mathcal {W}_{\le t,k}^{\text {S}}\) and let \(\overline{\mathcal {D}}^{\text {S}}_{t,k}\) denote the orthogonal lattice of \(\mathcal {D}^{\text {S}}_{t,k}\). We make use of Frankl rank to present a \((0,\pm 1)\) basis of \(\mathcal {D}^{\text {S}}_{t,k}\) and a (0, 1) basis of \(\overline{\mathcal {D}}^{\text {S}}_{t,k}\). For any commutative ring R, those nonzero functions \(f\in R^{2^{\text {S}}}\) satisfying \(\mathcal {W}_{t,\ge 0}^{\text {S}}f=0\) are called null t-designs over R, while those satisfying \(\mathcal {W}_{\le t,\ge 0}^{\text {S}}f=0\) are called null \((\le t)\)-designs over R. We report some observations on the distributions of the support sizes of null designs as well as the structure of null designs with extremal support sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

All data generated or analyzed during this study are included in this published article.

Notes

  1. See https://kconrad.math.uconn.edu/blurbs/linmultialg/modulesoverPID.pdf for free modules over a PID, its rank and the Smith normal form of any of its submodules.

References

  1. Frankl, P., Tokushige, N.: Extremal Problems for Finite Sets. Stud. Math. Libr., vol. 86, p. 224. American Mathematical Society, Providence, RI (2018). https://doi.org/10.1090/stml/086

  2. Hegedűs, G., Rónyai, L.: Standard monomials for \(q\)-uniform families and a conjecture of Babai and Frankl. Cent. Eur. J. Math. 1(2), 198–207 (2003). https://doi.org/10.2478/BF02476008

    Article  MathSciNet  Google Scholar 

  3. Ceccherini-Silberstein, T., Scarabotti, F., Tolli, F.: Representation Theory of the Symmetric Groups: The Okounkov-Vershik Approach, Character Formulas, and Partition Algebras. Cambridge Studies in Advanced Mathematics, vol. 121, p. 412. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9781139192361

  4. Cho, S.: On the support size of null designs of finite ranked posets. Combinatorica 19(4), 589–595 (1999). https://doi.org/10.1007/s004939970009

    Article  MathSciNet  Google Scholar 

  5. Deza, M.-M., Frankl, P., Singhi, N.M.: On functions of strength \(t\). Combinatorica 3(3–4), 331–339 (1983). https://doi.org/10.1007/BF02579189

    Article  MathSciNet  Google Scholar 

  6. van Lint, J.H., Wilson, R.M.: A Course in Combinatorics, 2nd edn., p. 602. Cambridge University Press, Cambridge (2001). https://doi.org/10.1017/CBO9780511987045

  7. Engel, K.: Sperner Theory. Encyclopedia of Mathematics and its Applications, vol. 65, p. 417. Cambridge University Press, Cambridge (1997). https://doi.org/10.1017/CBO9780511574719

  8. Bannai, E., Bannai, E., Ito, T., Tanaka, R.: Algebraic Combinatorics. Translated from the Japanese, Originally published by Kyoritsu Shuppan (Kyoritsu Publisher), Tokyo 2016 edn. De Gruyter Ser. Discrete Math. Appl., vol. 5, p. 425. De Gruyter, Berlin (2021). https://doi.org/10.1515/9783110630251

  9. Stanton, D.: Harmonics on posets. J. Combin. Theory Ser. A 40(1), 136–149 (1985). https://doi.org/10.1016/0097-3165(85)90052-4

    Article  MathSciNet  Google Scholar 

  10. Ceccherini-Silberstein, T., Scarabotti, F., Tolli, F.: Harmonic Analysis on Finite Groups: Representation Theory, Gelfand Pairs and Markov Chains. Cambridge Studies in Advanced Mathematics, vol. 108, p. 440. Cambridge University Press, Cambridge (2008). https://doi.org/10.1017/CBO9780511619823

  11. Delsarte, P.: Association schemes and \(t\)-designs in regular semilattices. J. Combinatorial Theory Ser. A 20(2), 230–243 (1976). https://doi.org/10.1016/0097-3165(76)90017-0

    Article  MathSciNet  Google Scholar 

  12. Martin, W.J.: Designs in product association schemes. Des. Codes Cryptogr. 16(3), 271–289 (1999). https://doi.org/10.1023/A:1008340128973

    Article  MathSciNet  Google Scholar 

  13. Cameron, P.J.: A generalisation of \(t\)-designs. Discrete Math. 309(14), 4835–4842 (2009). https://doi.org/10.1016/j.disc.2008.07.005

    Article  MathSciNet  Google Scholar 

  14. Liu, S., Han, Y., Ma, L., Wang, L., Tian, Z.: A generalization of group divisible \(t\)-designs. J. Combin. Des. 31(11), 575–603 (2023). https://doi.org/10.1002/jcd.21912

    Article  MathSciNet  Google Scholar 

  15. Mészáros, T.: Standard monomials and extremal point sets. Discrete Math. 343(4), 1–7 (2020). https://doi.org/10.1016/j.disc.2019.111785 . Article 111785

  16. Wu, Y., Xiong, Y.: Sparse properties in terms of conditionalization and marginalization (2023). https://math.sjtu.edu.cn/faculty/ykwu/data/Paper/sparsity2023.pdf

  17. Samei, R., Yang, B., Zilles, S.: Generalizing labeled and unlabeled sample compression to multi-label concept classes. In: Algorithmic Learning Theory. Lecture Notes in Comput. Sci., vol. 8776, pp. 275–290. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11662-4_20

  18. Dress, A., Huber, K.T., Koolen, J., Moulton, V., Spillner, A.: Basic Phylogenetic Combinatorics, p. 264. Cambridge University Press, Cambridge (2012). https://doi.org/10.1017/CBO9781139019767

  19. Qian, C., Wu, Y., Xiong, Y.: Collapsible rainbow simplicial complex: Face vector and tree structure (2023). https://math.sjtu.edu.cn/faculty/ykwu/data/Paper/Rainbow_Simplicial_Complex.pdf

  20. Chen, Y., Diaconis, P., Holmes, S.P., Liu, J.S.: Sequential Monte Carlo methods for statistical analysis of tables. J. Amer. Statist. Assoc. 100(469), 109–120 (2005). https://doi.org/10.1198/016214504000001303

    Article  MathSciNet  CAS  Google Scholar 

  21. Moran, S., Yehudayoff, A.: Sample compression schemes for VC classes. J. ACM 63(3), 1–10 (2016). https://doi.org/10.1145/2890490. Art. 21

  22. Pak, I., Panova, G.: Bounds on Kronecker coefficients via contingency tables. Linear Algebra Appl. 602, 157–178 (2020). https://doi.org/10.1016/j.laa.2020.05.005

    Article  MathSciNet  Google Scholar 

  23. Diaconis, P., Simper, M.: Statistical enumeration of groups by double cosets. J. Algebra 607(part A), 214–246 (2022). https://doi.org/10.1016/j.jalgebra.2021.05.010

  24. Floyd, S., Warmuth, M.: Sample compression, learnability, and the Vapnik-Chervonenkis dimension. Mach. Learn. 21(3), 269–304 (1995). https://doi.org/10.1023/A:1022660318680

    Article  Google Scholar 

  25. Warmuth, M.K.: Compressing to VC dimension many points. In: Schölkopf, B., Warmuth, M.K. (eds.) Learning Theory and Kernel Machines, pp. 743–744. Springer, Berlin, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45167-9_60

  26. Pálvölgyi, D., Tardos, G.: Unlabeled compression schemes exceeding the VC-dimension. Discrete Appl. Math. 276, 102–107 (2020). https://doi.org/10.1016/j.dam.2019.09.022

    Article  MathSciNet  Google Scholar 

  27. Chepoi, V., Knauer, K., Philibert, M.: Ample completions of oriented matroids and complexes of uniform oriented matroids. SIAM J. Discrete Math. 36(1), 509–535 (2022). https://doi.org/10.1137/20M1355434

    Article  MathSciNet  Google Scholar 

  28. Ellis, D.: Intersection problems in extremal combinatorics: theorems, techniques and questions old and new. In: Surveys in Combinatorics 2022. London Math. Soc. Lecture Note Ser., vol. 481, pp. 115–173. Cambridge Univ. Press, Cambridge (2022). https://doi.org/10.1017/9781009093927.005

  29. Tian, A., Wu, Y.: Stability of large rainbow intersecting family with product measure (2023). https://math.sjtu.edu.cn/faculty/ykwu/data/Paper/Weighted_rainbow_EKR_with_stability.pdf

  30. Bassols-Cornudella, B., Viganò, F.: Binomial Cayley graphs and applications to dynamics on finite spaces (2023). https://doi.org/10.48550/arXiv.2305.11249

  31. Wilson, R.M.: A diagonal form for the incidence matrices of \(t\)-subsets vs. \(k\)-subsets. European J. Combin. 11(6), 609–615 (1990). https://doi.org/10.1016/S0195-6698(13)80046-7

  32. Frankl, P.: Intersection theorems and mod \(p\) rank of inclusion matrices. J. Combin. Theory Ser. A 54(1), 85–94 (1990). https://doi.org/10.1016/0097-3165(90)90007-J

    Article  MathSciNet  Google Scholar 

  33. Gottlieb, D.H.: A certain class of incidence matrices. Proc. Amer. Math. Soc. 17, 1233–1237 (1966). https://doi.org/10.2307/2035716

    Article  MathSciNet  Google Scholar 

  34. Kantor, W.M.: On incidence matrices of finite projective and affine spaces. Math. Z. 124, 315–318 (1972). https://doi.org/10.1007/BF01113923

    Article  MathSciNet  Google Scholar 

  35. Delsarte, P.: Hahn polynomials, discrete harmonics, and \(t\)-designs. SIAM J. Appl. Math. 34(1), 157–166 (1978). https://doi.org/10.1137/0134012

    Article  MathSciNet  Google Scholar 

  36. Lehrer, G.I.: On incidence structures in finite classical groups. Math. Z. 147(3), 287–299 (1976). https://doi.org/10.1007/BF01214087

    Article  MathSciNet  Google Scholar 

  37. Frumkin, A., Yakir, A.: Rank of inclusion matrices and modular representation theory. Israel J. Math. 71(3), 309–320 (1990). https://doi.org/10.1007/BF02773749

    Article  MathSciNet  Google Scholar 

  38. de Caen, D.: A note on the ranks of set-inclusion matrices. Electron. J. Combin. 8(1), 1–2 (2001). https://doi.org/10.37236/1590. # N5

  39. Friedl, K., Rónyai, L.: Order shattering and Wilson’s theorem. Discrete Math. 270(1–3), 127–136 (2003). https://doi.org/10.1016/S0012-365X(02)00869-5

    Article  MathSciNet  Google Scholar 

  40. Keevash, P., Sudakov, B.: Set systems with restricted cross-intersections and the minimum rank of inclusion matrices. SIAM J. Discrete Math. 18(4), 713–727 (2005). https://doi.org/10.1137/S0895480103434634

    Article  MathSciNet  Google Scholar 

  41. Keevash, P.: Shadows and intersections: stability and new proofs. Adv. Math. 218(5), 1685–1703 (2008). https://doi.org/10.1016/j.aim.2008.03.023

    Article  MathSciNet  Google Scholar 

  42. Xiang, Z.: A Fisher type inequality for weighted regular \(t\)-wise balanced designs. J. Combin. Theory Ser. A 119(7), 1523–1527 (2012). https://doi.org/10.1016/j.jcta.2012.04.008

    Article  MathSciNet  Google Scholar 

  43. Huh, J., Wang, B.: Enumeration of points, lines, planes, etc. Acta Math. 218(2), 297–317 (2017). https://doi.org/10.4310/ACTA.2017.v218.n2.a2

    Article  MathSciNet  Google Scholar 

  44. Plaza, R., Xiang, Q.: Resilience of ranks of higher inclusion matrices. J. Algebraic Combin. 48(1), 31–50 (2018). https://doi.org/10.1007/s10801-017-0791-1

    Article  MathSciNet  Google Scholar 

  45. Beame, P., Gharan, S.O., Yang, X.: On the bias of Reed-Muller codes over odd prime fields. SIAM J. Discrete Math. 34(2), 1232–1247 (2020). https://doi.org/10.1137/18M1215104

    Article  MathSciNet  Google Scholar 

  46. Penttila, T., Siciliano, A.: On the incidence map of incidence structures. Ars Math. Contemp. 20(1), 51–68 (2021). https://doi.org/10.26493/1855-3974.1996.db7

  47. Wu, Y., Zhu, Y.: Top-heavy phenomena for transformations. Ars Math. Contemp. (4), 1–26 (2022). https://doi.org/10.26493/1855-3974.1753.52a. # P4.09

  48. Ducey, J.E., Sherwood, C.J.: A representation-theoretic computation of the rank of \(1\)-intersection incidence matrices: \(2\)-subsets vs. \(n\)-subsets (2022). https://doi.org/10.48550/arXiv.2205.04660

  49. Jolliffe, L.: A short proof of the rank formula for inclusion matrices using the representation theory of the symmetric group. Rocky Mountain J. Math. (2023). https://projecteuclid.org/journals/rmjm/rocky-mountain-journal-of-mathematics/DownloadAcceptedPapers/220223-Jolliffe.pdf

  50. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inform. Theory 25(1), 1–7 (1979). https://doi.org/10.1109/TIT.1979.1055985

    Article  MathSciNet  Google Scholar 

  51. Delsarte, P.: An algebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl. (10), 1–97 (1973). https://users.wpi.edu/~martin/RESEARCH/philips.pdf

  52. Krebs, M., Shaheen, A.: On the spectra of Johnson graphs. Electron. J. Linear Algebra 17, 154–167 (2008). https://doi.org/10.13001/1081-3810.1256

  53. Da Costa, P.H., Högele, M.A., Ruffino, P.R.: Stochastic \(n\)-point D-bifurcations of stochastic Lévy flows and their complexity on finite spaces. Stoch. Dyn. 22(7), 1–39 (2022). https://doi.org/10.1142/S0219493722400214. Paper No. 2240021

  54. Tarnanen, H., Aaltonen, M.J., Goethals, J.-M.: On the nonbinary Johnson scheme. European J. Combin. 6(3), 279–285 (1985). https://doi.org/10.1016/S0195-6698(85)80039-1

    Article  MathSciNet  Google Scholar 

  55. Crampe, N., Vinet, L., Zaimi, M., Zhang, X.: A bivariate \(Q\)-polynomial structure for the non-binary Johnson scheme (2023). https://doi.org/10.48550/arXiv.2306.01882

  56. Graver, J.E., Jurkat, W.B.: The module structure of integral designs. J. Combinatorial Theory Ser. A 15, 75–90 (1973). https://doi.org/10.1016/0097-3165(73)90037-x

    Article  MathSciNet  Google Scholar 

  57. Graham, R.L., Li, S.-Y.R., Li, W.-C.W.: On the structure of \(t\)-designs. SIAM J. Algebraic Discrete Methods 1(1), 8–14 (1980). https://doi.org/10.1137/0601002

    Article  MathSciNet  Google Scholar 

  58. Filmus, Y.: An orthogonal basis for functions over a slice of the Boolean hypercube. Electron. J. Combin. 23(1), 1–27 (2016). https://doi.org/10.37236/4567. Paper 1.23

  59. Bier, T.: Remarks on recent formulas of Wilson and Frankl. European J. Combin. 14(1), 1–8 (1993). https://doi.org/10.1006/eujc.1993.1001

    Article  MathSciNet  Google Scholar 

  60. Anstee, R.P., Rónyai, L., Sali, A.: Shattering news. Graphs Combin. 18(1), 59–73 (2002). https://doi.org/10.1007/s003730200003

    Article  MathSciNet  Google Scholar 

  61. Khosrovshahi, G.B., Maimani, H.R., Torabi, R.: On trades: an update. Discrete Appl. Math. 95(1–3), 361–376 (1999). https://doi.org/10.1016/S0166-218X(99)00086-4

    Article  MathSciNet  Google Scholar 

  62. Deza, M.-M., Frankl, P.: On the vector space of \(0\)-configurations. Combinatorica 2(4), 341–345 (1982). https://doi.org/10.1007/BF02579430

    Article  MathSciNet  Google Scholar 

  63. Khosrovshahi, G.B., Ajoodani-Namini, S.: A new basis for trades. SIAM J. Discrete Math. 3(3), 364–372 (1990). https://doi.org/10.1137/0403032

    Article  MathSciNet  Google Scholar 

  64. Khosrovshahi, G.B., Maysoori, C.: On the bases for trades. Linear Algebra Appl. 226(228), 731–748 (1995). https://doi.org/10.1016/0024-3795(95)00456-2

    Article  MathSciNet  Google Scholar 

  65. Hegedűs, G., Rónyai, L.: Gröbner bases for complete uniform families. J. Algebraic Combin. 17(2), 171–180 (2003). https://doi.org/10.1023/A:1022934815185

    Article  MathSciNet  Google Scholar 

  66. Srinivasan, M.K.: Symmetric chains, Gelfand-Tsetlin chains, and the Terwilliger algebra of the binary Hamming scheme. J. Algebraic Combin. 34(2), 301–322 (2011). https://doi.org/10.1007/s10801-010-0272-2

    Article  MathSciNet  Google Scholar 

  67. Bhattacharya, A., Singhi, N.M.: Some approaches for solving the general \((t, k)\)-design existence problem and other related problems. Discrete Appl. Math. 161(9), 1180–1186 (2013). https://doi.org/10.1016/j.dam.2012.03.011

    Article  MathSciNet  Google Scholar 

  68. Boyvalenkov, P.G., Dragnev, P.D., Hardin, D.P., Saff, E.B., Stoyanova, M.M.: Energy bounds for codes in polynomial metric spaces. Anal. Math. Phys. 9(2), 781–808 (2019). https://doi.org/10.1007/s13324-019-00313-x

    Article  MathSciNet  Google Scholar 

  69. Hwang, H.-L.M.: On the structure of \((v, k, t)\) trades. J. Statist. Plann. Inference 13(2), 179–191 (1986). https://doi.org/10.1016/0378-3758(86)90131-X

    Article  ADS  MathSciNet  Google Scholar 

  70. Kasami, T., Tokura, N.: On the weight structure of Reed-Muller codes. IEEE Trans. Inform. Theory IT-16, 752–759 (1970). https://doi.org/10.1109/tit.1970.1054545

  71. Liebler, R.A., Zimmermann, K.-H.: Combinatorial \(S_n\)-modules as codes. J. Algebraic Combin. 4(1), 47–68 (1995). https://doi.org/10.1023/A:1022485624417

    Article  MathSciNet  Google Scholar 

  72. Cho, S.: Minimal null designs and a density theorem of posets. European J. Combin. 19(4), 433–440 (1998). https://doi.org/10.1006/eujc.1997.0201

    Article  MathSciNet  Google Scholar 

  73. Jolliffe, L.: Universal \(p\)-ary designs. J. Combin. Des. 29(9), 607–618 (2021). https://doi.org/10.1002/jcd.21785

    Article  MathSciNet  Google Scholar 

  74. Mahmoodian, E.S., Soltankhah, N.: On the existence of \((v,k,t)\) trades. Australas. J. Combin. 6, 279–291 (1992). https://ajc.maths.uq.edu.au/pdf/6/ocr-ajc-v6-p279.pdf

  75. Khosrovshahi, G.B.: On trades and designs. Comput. Statist. Data Anal. 10(2), 163–167 (1990). https://doi.org/10.1016/0167-9473(90)90061-L

    Article  MathSciNet  Google Scholar 

  76. Krotov, D.S.: On the gaps of the spectrum of volumes of trades. J. Combin. Des. 26(3), 119–126 (2018). https://doi.org/10.1002/jcd.21592

    Article  MathSciNet  Google Scholar 

  77. Khosrovshahi, G.B., Singhi, N.M.: Further characterization of basic trades. J. Statist. Plann. Inference 58(1), 87–92 (1997). https://doi.org/10.1016/S0378-3758(96)00062-6

    Article  MathSciNet  Google Scholar 

  78. Cho, S.: Polytopes of minimal null designs. Commun. Korean Math. Soc. 17(1), 143–153 (2002). https://doi.org/10.4134/CKMS.2002.17.1.143

    Article  MathSciNet  Google Scholar 

  79. Krotov, D.S., Mogilnykh, I.Y., Potapov, V.N.: To the theory of \(q\)-ary Steiner and other-type trades. Discrete Math. 339(3), 1150–1157 (2016). https://doi.org/10.1016/j.disc.2015.11.002

    Article  MathSciNet  Google Scholar 

  80. Vorob’ev, K., Mogilnykh, I., Valyuzhenich, A.: Minimum supports of eigenfunctions of Johnson graphs. Discrete Math. 341(8), 2151–2158 (2018). https://doi.org/10.1016/j.disc.2018.04.018

    Article  MathSciNet  Google Scholar 

  81. Ghorbani, E., Kamali, S., Khosrovshahi, G.B., Krotov, D.S.: On the volumes and affine types of trades. Electron. J. Combin. 27(1), 1–28 (2020). https://doi.org/10.37236/8367. Paper No. 1.29

  82. Valyuzhenich, A.: Eigenfunctions and minimum 1-perfect bitrades in the Hamming graph. Discrete Math. 344(3), 1–9 (2021). https://doi.org/10.1016/j.disc.2020.112228. Paper No. 112228

  83. Qian, C., Wu, Y., Xiong, Y.: Phylogeny numbers of generalized Hamming graphs. Bull. Malays. Math. Sci. Soc. 45(5), 2733–2744 (2022). https://doi.org/10.1007/s40840-022-01338-5

    Article  MathSciNet  Google Scholar 

  84. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science, 2nd edn., p. 657. Addison-Wesley Publishing Company, Reading, MA (1994). https://www-cs-faculty.stanford.edu/~knuth/gkp.html

  85. Bollobás, B.: On generalized graphs. Acta Math. Acad. Sci. Hungar. 16, 447–452 (1965). https://doi.org/10.1007/BF01904851

    Article  MathSciNet  Google Scholar 

  86. Katona, G.O.H.: Solution of a problem of A. Ehrenfeucht and J. Mycielski. J. Combinatorial Theory Ser. A 17, 265–266 (1974). https://doi.org/10.1016/0097-3165(74)90018-1

  87. Lovász, L.: Flats in matroids and geometric graphs. In: Combinatorial Surveys (Proc. Sixth British Combinatorial Conf., Royal Holloway Coll., Egham, 1977), pp. 45–86 (1977). https://web.cs.elte.hu/~lovasz/scans/flats.pdf

  88. Frankl, P.: An extremal problem for two families of sets. European J. Combin. 3(2), 125–127 (1982). https://doi.org/10.1016/S0195-6698(82)80025-5

    Article  MathSciNet  Google Scholar 

  89. Kalai, G.: Hyperconnectivity of graphs. Graphs Combin. 1(1), 65–79 (1985). https://doi.org/10.1007/BF02582930

    Article  MathSciNet  Google Scholar 

  90. Ben Amira, A., Dammak, J.: Rank of incidence matrix with applications to digraph reconstruction. J. Comb. 11(4), 657–679 (2020). https://doi.org/10.4310/JOC.2020.v11.n4.a5

    Article  MathSciNet  Google Scholar 

  91. Frankl, P., Pach, J.: On well-connected sets of strings. Electron. J. Combin. 29(1), 1–6 (2022). https://doi.org/10.37236/10291. Paper No. 1.56

  92. Godsil, C.D., Krasikov, I., Roditty, Y.: Reconstructing graphs from their \(k\)-edge deleted subgraphs. J. Combin. Theory Ser. B 43(3), 360–363 (1987). https://doi.org/10.1016/0095-8956(87)90013-X

    Article  MathSciNet  Google Scholar 

  93. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications, 2nd edn. Springer Monographs in Mathematics, p. 795. Springer, London (2009). https://doi.org/10.1007/978-1-84800-998-1

  94. Stanley, R.P.: \(f\)-vectors and \(h\)-vectors of simplicial posets. J. Pure Appl. Algebra 71(2–3), 319–331 (1991). https://doi.org/10.1016/0022-4049(91)90155-U

    Article  MathSciNet  Google Scholar 

  95. Cambie, S., Chornomaz, B., Dvir, Z., Filmus, Y., Moran, S.: A Sauer-Shelah-Perles lemma for lattices. Electron. J. Combin. 27(4), 1–21 (2020). https://doi.org/10.37236/9273. Paper No. 4.19

  96. Frankl, P., Pach, J.: On the number of sets in a null \(t\)-design. European J. Combin. 4(1), 21–23 (1983). https://doi.org/10.1016/S0195-6698(83)80004-3

    Article  MathSciNet  Google Scholar 

  97. Lefmann, H.: An extremal problem for Graham-Rothschild parameter words. Combinatorica 9(2), 153–160 (1989). https://doi.org/10.1007/BF02124677

    Article  MathSciNet  Google Scholar 

  98. Bruen, A.A., Rothschild, B.L., van Lint, J.H.: On characterizing subspaces. J. Combin. Theory Ser. A 29(2), 257–260 (1980). https://doi.org/10.1016/0097-3165(80)90018-7

    Article  MathSciNet  Google Scholar 

  99. Xie, N., Xu, S., Xu, Y.: A generalization of a theorem of Rothschild and Van Lint. In: Computer Science—Theory and Applications. Lecture Notes in Comput. Sci., vol. 12730, pp. 460–483. Springer, Cham ([2021] 2021). https://doi.org/10.1007/978-3-030-79416-3_28

  100. Musili, C.: Representations of Finite Groups. Texts and Readings in Mathematics, vol. 3, p. 237. Hindustan Book Agency, Delhi (1993). https://doi.org/10.1007/978-93-80250-85-4

  101. Qian, C., Wu, Y., Xiong, Y.: Collapsibility of oriented matroids (2021). https://math.sjtu.edu.cn/faculty/ykwu/data/Paper/Hyperplane_arrangement.pdf

  102. Frankl, P., Füredi, Z., Kalai, G.: Shadows of colored complexes. Math. Scand. 63(2), 169–178 (1988). https://doi.org/10.7146/math.scand.a-12231

    Article  MathSciNet  Google Scholar 

  103. Hartman, A.: Halving the complete design. In: Combinatorial Design Theory. North-Holland Math. Stud., vol. 149, pp. 207–224. North-Holland, Amsterdam (1987). https://doi.org/10.1016/S0304-0208(08)72888-3

  104. Huang, X., Huang, Q., Wang, J.: The spectrum and automorphism group of the set-inclusion graph. Algebra Colloq. 28(3), 497–506 (2021). https://doi.org/10.1142/S1005386721000389

    Article  MathSciNet  Google Scholar 

  105. Iglesias, R., Natale, M.: A fast Fourier transform for the Johnson graph. J. Fourier Anal. Appl. 28(4), 1–31 (2022). https://doi.org/10.1007/s00041-022-09952-4. Paper No. 62

  106. Krotov, D.S.: The minimum volume of subspace trades. Discrete Math. 340(12), 2723–2731 (2017). https://doi.org/10.1016/j.disc.2017.08.012

    Article  MathSciNet  Google Scholar 

  107. Kiermaier, M., Laue, R., Wassermann, A.: A new series of large sets of subspace designs over the binary field. Des. Codes Cryptogr. 86(2), 251–268 (2018). https://doi.org/10.1007/s10623-017-0349-1

    Article  MathSciNet  Google Scholar 

  108. Liang, X., Ito, T., Watanabe, Y.: The Terwilliger algebra of the Grassmann scheme \(J_q(N, D)\) revisited from the viewpoint of the quantum affine algebra \(U_q(\widehat{\mathfrak{sl} }_2)\). Linear Algebra Appl. 596, 117–144 (2020). https://doi.org/10.1016/j.laa.2020.03.005

    Article  MathSciNet  Google Scholar 

  109. Wu, Y., Zhao, S.: Incidence matrix and cover matrix of nested interval orders. Electron. J. Linear Algebra 23, 43–65 (2012). https://doi.org/10.13001/1081-3810.1504

Download references

Acknowledgements

We are grateful to Konstantin Vorob’ev for reminding us [84, Eq. (5.22)], and we thank Qing Xiang and Lilu Zhao for their useful comments on simplifying our original proof of Lemma 4.22. We have to acknowledge the significant effort from the referees in checking a paper of this length and we feel very lucky to have their supports. This work is sponsored by the National Natural Science Foundation of China 11971305 and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaokun Wu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Ebrahim Ghorbani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, C., Wu, Y. & Xiong, Y. Inclusion Matrices for Rainbow Subsets. Bull. Iran. Math. Soc. 50, 2 (2024). https://doi.org/10.1007/s41980-023-00829-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41980-023-00829-w

Keywords

Mathematics Subject Classification

Navigation