Skip to main content
Log in

Proximal Clipping and Distal High-Flow Bypass in the Treatment of Giant/Complex Intracranial Aneurysm: An Opportunity or a Risk from a Fluid-Structural Interaction Analysis

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Objectives

Conventional clipping and endovascular treatment are difficult to apply for some giant intracranial aneurysms (GIAs), and sometimes extracranial-to-intracranial (EC-IC) bypass becomes the optional choice. However, not all GIA patients can benefit from it. This study aims to recognize the underlying problems.

Methods

We included eligible patients in our care. Then, we researched from three levels: a retrospective review of clinical data, fluid-structural analysis from two representative patient-specific models, and fluid-structural interaction analysis for idealized models to investigate the hemodynamic and biomechanical mechanisms.

Results

In this article, we report nine patients with GIA who underwent EC-IC surgery. Of them, three experienced dangerous postoperative hemorrhage, and one patient died. Among these three patients, two lacked the A1 segment of the anterior cerebral artery (ACA). The numerical simulation showed that after surgery, for the patient with an unruptured aneurysm and existence of ACA, the wall deformation, wall stress, pressure, and area of the oscillatory shear index (OSI) > 0.2 were decreased by 43%, 39%, 33%, and 13%, while the patient without A1 segment having postoperative hemorrhage showed 36%, 45%, 13%, and 55% increased, respectively. Thus, we postulated a dangerous “stump phenomenon” in such conditions and further demonstrated it from idealized models with different sizes of ACA. Finally, we found a larger anastomosis angle and smaller diameter of the graft can alleviate this effect.

Conclusions

Neurosurgeon should cautiously evaluate the opportunity and risk for such patients who have aplasia of the A1 segment of ACA when making clinical decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The original contributions presented in the study are included in the article/ Supplementary Material. Further inquiries can be directed to the corresponding authors.

Abbreviations

ACA:

Anterior cerebral artery

ALE:

Arbitrary Lagrangian–Eulerian

CFD:

Computational fluid dynamics

CTA:

Computed tomography angiography

EC-IC:

Extracranial-to-intracranial

FSI:

Fluid-structural interaction

GIAs:

Giant intracranial aneurysms

ICA:

Internal carotid artery

MCA:

Middle cerebral artery

NURBS:

Non-Uniform Rational B-splines

OSI:

Oscillatory shear index

RA:

Radial artery

RRT:

Relative residence time

SV:

Saphenous vein

Tawss:

Time-averaged wall shear stress

WSS:

Wall shear stress

References

  1. Wiebers, D. O., J. P. Whisnant, J. Huston 3rd., I. Meissner, R. D. Brown Jr., D. G. Piepgras, G. S. Forbes, K. Thielen, D. Nichols, W. M. O’Fallon, J. Peacock, L. Jaeger, N. F. Kassell, G. L. Kongable-Beckman, and J. C. Torner. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet (Lond, Engl). 362:103–110, 2003.

    Article  Google Scholar 

  2. Raaymakers, T. W., G. J. Rinkel, M. Limburg, and A. Algra. Mortality and morbidity of surgery for unruptured intracranial aneurysms: a meta-analysis. Stroke. 29:1531–1538, 1998.

    Article  CAS  PubMed  Google Scholar 

  3. Drake, C. G. Giant intracranial aneurysms: experience with surgical treatment in 174 patients. Clin Neurosurg. 26:12–95, 1979.

    Article  CAS  PubMed  Google Scholar 

  4. Yasargil, M. Diagnosis and indications for operations in cerebrovascular occlusive disease. Microsurgery applied to neurosurgery Stuttgart. 7:95–119, 1960.

    Google Scholar 

  5. Houkin, K., H. Kamiyama, S. Kuroda, T. Ishikawa, A. Takahashi, and H. Abe. Long-term patency of radial artery graft bypass for reconstruction of the internal carotid artery. J Neurosurg. 90:786–790, 1999.

    Article  CAS  PubMed  Google Scholar 

  6. Yanagisawa, T., H. Kinouchi, T. Sasajima, and H. Shimizu. Long-term follow-up for a giant basilar trunk aneurysm surgically treated by proximal occlusion and external carotid artery to posterior cerebral artery bypass using a saphenous vein graft. J. Stroke Cerebrovasc. Dis. 25:e212–e213, 2016.

    Article  PubMed  Google Scholar 

  7. Regli, L., D. G. Piepgras, and K. K. Hansen. Late patency of long saphenous vein bypass grafts to the anterior and posterior cerebral circulation. J. Neurosurg. 83:806–811, 1995.

    Article  CAS  PubMed  Google Scholar 

  8. Sanai, N., Z. Zador, and M. T. Lawton. Bypass surgery for complex brain aneurysms: an assessment of intracranial-intracranial bypass. Neurosurgery. 65:670–683, 2009. (discussion 683)

    Article  PubMed  Google Scholar 

  9. Sekhar, L. N., S. D. Bucur, W. O. Bank, and D. C. Wright. Venous and arterial bypass grafts for difficult tumors, aneurysms, and occlusive vascular lesions: evolution of surgical treatment and improved graft results. Neurosurgery. 44:1207–1223, 1999. (discussion 1223-4)

    CAS  PubMed  Google Scholar 

  10. Jafar, J. J., S. M. Russell, and H. H. Woo. Treatment of giant intracranial aneurysms with saphenous vein extracranial-to-intracranial bypass grafting: indications, operative technique, and results in 29 patients. Neurosurgery. 51:138–144, 2002. (discussion 144-6)

    Article  PubMed  Google Scholar 

  11. Ishishita, Y., R. Tanikawa, K. Noda, H. Kubota, N. Izumi, M. Katsuno, N. Ota, T. Miyazaki, M. Hashimoto, T. Kimura, and A. Morita. Universal extracranial-intracranial graft bypass for large or giant internal carotid aneurysms: techniques and results in 38 consecutive patients. World Neurosurg. 82:130–139, 2014.

    Article  PubMed  Google Scholar 

  12. Spetzler, R. F., H. Schuster, and R. A. Roski. Elective extracranial-intracranial arterial bypass in the treatment of inoperable giant aneurysms of the internal carotid artery. J. Neurosurg. 53:22–27, 1980.

    Article  CAS  PubMed  Google Scholar 

  13. Sekhar, L. N., J. M. Duff, C. Kalavakonda, and M. Olding. Cerebral revascularization using radial artery grafts for the treatment of complex intracranial aneurysms: techniques and outcomes for 17 patients. Neurosurgery. 49:646–658, 2001. (discussion 658-9)

    CAS  PubMed  Google Scholar 

  14. Dazeo, N., R. Muñoz, A. P. Narata, H. Fernandez, and I. Larrabide. Intra-saccular device modeling for treatment planning of intracranial aneurysms: from morphology to hemodynamics. Int. J. Comput. Assist. Radiol. Surg. 16:1663–1673, 2021.

    Article  PubMed  Google Scholar 

  15. Razaghi, R., H. Biglari, and A. Karimi. Risk of rupture of the cerebral aneurysm in relation to traumatic brain injury using a patient-specific fluid-structure interaction model. Comput. Methods Progr. Biomed. 176:9–16, 2019.

    Article  Google Scholar 

  16. Volokh, K. Y. Prediction of arterial failure based on a microstructural bi-layer fiber-matrix model with softening. J. Biomech. 41:447–453, 2008.

    Article  CAS  PubMed  Google Scholar 

  17. Lee, C. J., Y. Zhang, H. Takao, Y. Murayama, and Y. Qian. A fluid-structure interaction study using patient-specific ruptured and unruptured aneurysm: the effect of aneurysm morphology, hypertension and elasticity. J. Biomech. 46:2402–2410, 2013.

    Article  CAS  PubMed  Google Scholar 

  18. Isaksen, J. G., Y. Bazilevs, T. Kvamsdal, Y. Zhang, J. H. Kaspersen, K. Waterloo, B. Romner, and T. Ingebrigtsen. Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke. 39:3172–3178, 2008.

    Article  PubMed  Google Scholar 

  19. Torii, R., M. Oshima, T. Kobayashi, K. Takagi, Tezduyar TEJCM. Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput. Mech. 38:482–490, 2006.

    Article  Google Scholar 

  20. Sun, H. T., K. Y. Sze, A. Y. S. Tang, A. C. O. Tsang, A. C. H. Yu, and K. W. Chow. Effects of aspect ratio, wall thickness and hypertension in the patient-specific computational modeling of cerebral aneurysms using fluid-structure interaction analysis. En. Appl. Comput. Fluid Mech. 13(1):229–244, 2019.

    Google Scholar 

  21. Russell, J. H., N. Kelson, M. Barry, M. Pearcy, D. F. Fletcher, and C. D. Winter. Computational fluid dynamic analysis of intracranial aneurysmal bleb formation. Neurosurgery. 73:1061–1068, 2013.

    Article  PubMed  Google Scholar 

  22. Huang, Z., M. Zeng, W. G. Tao, F. Y. Zeng, C. Q. Chen, L. B. Zhang, and F. H. Chen. A hemodynamic mechanism correlating with the initiation of MCA bifurcation aneurysms. AJNR Am. J. Neuroradiol. 41:1217–1224, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ford, M. D., N. Alperin, S. H. Lee, D. W. Holdsworth, and D. A. Steinman. Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries. Physiol. Meas. 26:477–488, 2005.

    Article  PubMed  Google Scholar 

  24. Costalat, V., M. Sanchez, D. Ambard, L. Thines, N. Lonjon, F. Nicoud, H. Brunel, J. P. Lejeune, H. Dufour, P. Bouillot, J. P. Lhaldky, K. Kouri, F. Segnarbieux, C. A. Maurage, K. Lobotesis, M. C. Villa-Uriol, C. Zhang, A. F. Frangi, G. Mercier, A. Bonafé, L. Sarry, and F. Jourdan. Biomechanical wall properties of human intracranial aneurysms resected following surgical clipping (IRRAs Project). J. Biomech. 44:2685–2691, 2011.

    Article  CAS  PubMed  Google Scholar 

  25. Long, Y., H. Yu, Z. Zhuo, Y. Zhang, Y. Wang, X. Yang, and H. Li. A geometric scaling model for assessing the impact of aneurysm size ratio on hemodynamic characteristics. Biomed. Eng. 13:17, 2014.

    Google Scholar 

  26. Himburg, H. A., D. M. Grzybowski, A. L. Hazel, J. A. LaMack, X. M. Li, and M. H. Friedman. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am. J. Physiol. Heart Circ. Physiol. 286:H1916–H1922, 2004.

    Article  CAS  PubMed  Google Scholar 

  27. Lawton, M. T., M. G. Hamilton, J. J. Morcos, and R. F. Spetzler. Revascularization and aneurysm surgery: current techniques, indications, and outcome. Neurosurgery. 38:83–92, 1996. (discussion 92-4)

    Article  CAS  PubMed  Google Scholar 

  28. Thines, L., F. Proust, P. Marinho, A. Durand, A. van der Zwan, L. Regli, and J. P. Lejeune. Giant and complex aneurysms treatment with preservation of flow via bypass technique. Neuro-Chirurgie. 62:1–13, 2016.

    Article  CAS  PubMed  Google Scholar 

  29. Sorimachi, T., T. Osada, A. Hirayama, H. Shigematsu, K. Srivatanakul, and M. Matsumae. Preservation of anterior choroidal artery blood flow during trapping of the internal carotid artery for a ruptured blood blister-like aneurysm with high-flow bypass. World Neurosurg. 122:e847–e855, 2019.

    Article  PubMed  Google Scholar 

  30. Parkinson, R. J., C. S. Eddleman, H. H. Batjer, and B. R. Bendok. Giant intracranial aneurysms: endovascular challenges. Neurosurgery. 59:S103–S112, 2006. (discussion S3-13)

    Article  PubMed  Google Scholar 

  31. Haque, R., C. Kellner, and R. A. Solomon. Spontaneous thrombosis of a giant fusiform aneurysm following extracranial-intracranial bypass surgery. J. Neurosurg. 110:469–474, 2009.

    Article  PubMed  Google Scholar 

  32. Cantore, G., A. Santoro, and R. Da Pian. Spontaneous occlusion of supraclinoid aneurysms after the creation of extra-intracranial bypasses using long grafts: report of two cases. Neurosurgery. 44:216–219, 1999. (discussion 219-20)

    Article  CAS  PubMed  Google Scholar 

  33. Possati, G., M. Gaudino, F. Alessandrini, N. Luciani, F. Glieca, C. Trani, C. Cellini, C. Canosa, and G. Di Sciascio. Midterm clinical and angiographic results of radial artery grafts used for myocardial revascularization. J. Thorac. Cardiovasc. Surg. 116:1015–1021, 1998.

    Article  CAS  PubMed  Google Scholar 

  34. Bols, J., J. Degroote, B. Trachet, B. Verhegghe, P. Segers, and J. Vierendeels. A computational method to assess the in vivo stresses and unloaded configuration of patient-specific blood vessels. J. Comput. Appl. Math. 246:10–17, 2013.

    Article  Google Scholar 

  35. Cebral, J. R., X. Duan, P. S. Gade, B. J. Chung, F. Mut, K. Aziz, and A. M. Robertson. Regional mapping of flow and wall characteristics of intracranial aneurysms. Ann. Biomed. Eng. 44:3553–3567, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cho, K. C., H. Yang, J. J. Kim, J. H. Oh, and Y. B. Kim. Prediction of rupture risk in cerebral aneurysms by comparing clinical cases with fluid-structure interaction analyses. Sci. Rep. 10:18237, 2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Voß, S., Glaßer, S., Hoffmann, T., Beuing, O., Weigand, S., Jachau, K., Preim, B., Thévenin, D., Janiga. G., Berg, P.J.C. and medicine mmi. Fluid-structure simulations of a ruptured intracranial aneurysm: constant versus patient-specific wall thickness. 2016;2016.

  38. Shamloo, A., M. A. Nejad, and M. Saeedi. Fluid-structure interaction simulation of a cerebral aneurysm: effects of endovascular coiling treatment and aneurysm wall thickening. J. Mech. Behav. Biomed. Mater. 74:72–83, 2017.

    Article  PubMed  Google Scholar 

  39. Cebral, J. R., X. Duan, B. J. Chung, C. Putman, K. Aziz, and A. M. Robertson. Wall mechanical properties and hemodynamics of unruptured intracranial aneurysms. AJNR Am. J. Neuroradiol. 36:1695–1703, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

Not applicable

Funding

The authors received no financial support for the research authorship and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

SL: made substantial contributions to the conception, design, analysis, and interpretation of data, and has drafted the manuscript. SL: made contributions to the design of the work and revision of the manuscript. SL and ZH: made contributions to the acquisition of data. HC & FC: the corresponding author, made contributions to the conception and interpretation of data and has determined the final version to be submitted for publishing. SL, ZH, HC, FC read and approved the final manuscript.

Corresponding authors

Correspondence to Hua Chen or Fenghua Chen.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Ethical Approval

This study was approved by the Ethics Committee of Xiangya Hospital.

Consent to Participate

Informed consent was obtained from all individual participants or their guardians.

Consent for Publication

All authors approved this publication.

Additional information

Associate Editor Jamshid Karimov, MD, PhD oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5179 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Huang, Z., Chen, H. et al. Proximal Clipping and Distal High-Flow Bypass in the Treatment of Giant/Complex Intracranial Aneurysm: An Opportunity or a Risk from a Fluid-Structural Interaction Analysis. Cardiovasc Eng Tech (2023). https://doi.org/10.1007/s13239-023-00704-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13239-023-00704-z

Keywords

Navigation