Skip to main content
Log in

Dielectric Barrier Discharge Plasma-Enabled Energy Conversion Under Multiple Operating Parameters: Machine Learning Optimization

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Dielectric barrier discharge is an important method in plasma-enabled energy conversion. By coupling different power sources, plasma parameters can be easily controlled by a variety of operating parameters to optimize plasma-enabled non-oxidative methane conversion and plasma-catalytic ammonia synthesis. Due to the complexity of the reactions in the plasma, the application of the trial-and-error experiment method to multi-parameter problems will consume a lot of resources and time. When the cause of the change in response can be known, multi-parameter regression and sure independence screening and sparsifying operator can reasonably predict the changing relationship between the influencing factors and the experimental results, and at the same time give the expression, which is applied to the prediction of plasma-enabled non-oxidative methane conversion under different rising times, pulse widths, frequencies, and voltages. However, catalysts are usually added in plasma energy conversion. The characteristics of catalysts are determined by multiple macro- and micro-characteristics. If fitting analysis is carried out for each feature, the problem of data explosion will be brought about, and this is not feasible in the experiment. Therefore, the artificial neural network is used to explain the influence of the N2 ratio and gas temperature of different catalysts due to the lack of clear characteristic quantity to characterize the catalytic action in plasma-catalytic ammonia synthesis. Different machine learning methods applied to different problems will accelerate the parameter optimization in plasma-enabled energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the manuscript.

References

  1. Shao T, Wang R, Zhang C, Yan P (2018) Atmospheric-pressure pulsed discharges and plasmas: mechanism, characteristics, and applications. High Volt 3:14–20. https://doi.org/10.1049/hve.2016.0014

    Article  Google Scholar 

  2. Zhang X, Zhao Y, Yang C (2023) Recent developments in thermal characteristics of surface dielectric barrier discharge plasma actuators driven by sinusoidal high-voltage power. Chin J Aeronaut 36:1–21. https://doi.org/10.1016/j.cja.2022.01.026

    Article  Google Scholar 

  3. U Kogelschatz (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23:1–46. https://doi.org/10.1023/A:1022470901385

    Article  Google Scholar 

  4. Bai M, Zhang Z, Bai X, Bai M, Ning W (2003) Plasma synthesis of ammonia with a microgap dielectric barrier discharge at ambient pressure. IEEE Trans Plasma Sci 31:1285–1291. https://doi.org/10.1109/tps.2003.818761

    Article  CAS  Google Scholar 

  5. Kim H, Teramoto Y, Ogata A, Takagi H, Nanba T (2017) Atmospheric-pressure nonthermal plasma synthesis of ammonia over ruthenium catalysts. Plasma Processes Polym 14:e1600157. https://doi.org/10.1002/ppap.201600157

    Article  CAS  Google Scholar 

  6. Bai M, Zhang Z, Bai M, Bai X, Gao H (2008) Synthesis of ammonia using CH4/N2 plasmas based on micro-gap discharge under environmentally friendly condition. Plasma Chem Plasma Process 28:405–414. https://doi.org/10.1007/s11090-008-9132-4

    Article  CAS  Google Scholar 

  7. Chen J, Crooks R, Seefeldt L, Bren K, Bullock R, Darensbourg M, Holland P, Hoffman B, Janik M, Jones A, Kanatzidis M, King P, Lancaster K, Lymar S, Pfromm P, Schneider W, R Schrock (2018) Beyond fossil fuel-driven nitrogen transformations. Science 360:eaar6611. https://doi.org/10.1126/science.aar6611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Geem K, Galvita V, Marin G (2019) Making chemicals with electricity. Science 364:734–735. https://doi.org/10.1126/science.aax5179

    Article  CAS  PubMed  Google Scholar 

  9. Jiao F, Xu B (2019) Electrochemical ammonia synthesis and ammonia fuel cells. Adv Mater 31:e1805173. https://doi.org/10.1002/adma.201805173

    Article  CAS  PubMed  Google Scholar 

  10. Winter L, Chen J (2021) N2 fixation by plasma-activated processes. Joule 5:300–315. https://doi.org/10.1016/j.joule.2020.11.009

    Article  CAS  Google Scholar 

  11. Kyriakou V, Garagounis I, Vourros A, Vasileiou E, Stoukides M (2020) An Electrochemical Haber-Bosch process. Joule 4:142–158. https://doi.org/10.1016/j.joule.2019.10.006

    Article  CAS  Google Scholar 

  12. Davis S, Lewis N, Shaner M, Aggarwal S, Arent D, Azevedo IL, Benson S, Bradley T, Brouwer J, Chiang Y, Clack C, Cohen A, Doig S, Edmonds J, Fennell P, Field C, Hannegan B, Hodge B, Hoffert M, Ingersoll E, Jaramillo P, Lackner K, Mach K, Mastrandrea M, Ogden J, Peterson P, Sanchez D, Sperling D, Stagner J, Trancik J, Yang C, Caldeira K (2018) Net-zero emissions energy systems. Science 360:eaas9793. https://doi.org/10.1126/science.aas9793

    Article  CAS  PubMed  Google Scholar 

  13. Zhou D, Zhou R, Zhou R, Liu B, Zhang T, Xian Y, Cullen P, Lu X, Ostrikov K (2021) Sustainable ammonia production by non-thermal plasmas: status, mechanisms, and opportunities. Chem Eng J 421:129544. https://doi.org/10.1016/j.cej.2021.129544

    Article  CAS  Google Scholar 

  14. Hong J, Aramesh M, Shimoni O, Seo DH, Yick S, Greig A, Charles C, Prawer S, Murphy A (2016) Plasma catalytic synthesis of ammonia using functionalized-carbon coatings in an atmospheric pressure non-equilibrium discharge. Plasma Chem Plasma Process 36:917–940. https://doi.org/10.1007/s11090-016-9711-8

    Article  CAS  Google Scholar 

  15. Zeng X, Zhang S, Liu Y, Hu X, Ostrikov K, Shao T (2023) Energy-efficient pathways for pulsed-plasma-activated sustainable ammonia synthesis. ACS Sustain Chem Eng 11:1110–1120. https://doi.org/10.1021/acssuschemeng.2c06259

    Article  CAS  Google Scholar 

  16. Tsuchida Y, Murakami N, Sakakura T, Takatsuji Y, Haruyama T (2021) Drastically increase in atomic nitrogen production depending on the dielectric constant of beads filled in the discharge space. ACS Omega 6:29759–29764. https://doi.org/10.1021/acsomega.1c04201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang Y, Craven M, Yu X, Ding J, Bryant P, Huang J et al (2019) Plasma-enhanced catalytic synthesis of ammonia over a Ni/Al2O3 catalyst at near-room temperature: insights into the importance of the catalyst surface on the reaction mechanism. ACS Catal 9:10780–10793. https://doi.org/10.1021/acscatal.9b02538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao H, Song G, Chen Z, Yang X, Yan C, Abe S, Ju Y, Sundaresan S, Koel B (2022) In situ identification of NNH and N2H2 by using molecular-beam mass spectrometry in plasma-assisted catalysis for NH3 synthesis. ACS Energy Letters 7:53–58. https://doi.org/10.1021/acsenergylett.1c02207

    Article  CAS  Google Scholar 

  19. Zou C, Zhao Q, Zhang G, Xiong B (2016) Energy revolution: from a fossil energy era to a new energy era. Nat Gas Ind 36:1–11. https://doi.org/10.1016/j.ngib.2016.02.001

    Article  Google Scholar 

  20. Vakili R, Gholami R, Stere C, Chansai S, Chen H, Holmes S, Jiao Y, Hardacre C, Fan X (2020) Plasma-assisted catalytic dry reforming of methane (DRM) over metal-organic frameworks (MOFs)-based catalysts. Appl Catal B 260:118195. https://doi.org/10.1016/j.apcatb.2019.118195

    Article  CAS  Google Scholar 

  21. Zhang S, Gao Y, Sun H, Fan Z, Shao T (2022) Dry reforming of methane by microsecond pulsed dielectric barrier discharge plasma: optimizing the reactor structures. High Voltage 7:718–729. https://doi.org/10.1049/hve2.12201

    Article  Google Scholar 

  22. Gao Y, Zhang S, Sun H, Wang RX, Tu X, Shao T (2018) Highly efficient conversion of methane using microsecond and nanosecond pulsed spark discharges. Appl Energy 226:534–545. https://doi.org/10.1016/j.apenergy.2018.06.006

    Article  CAS  Google Scholar 

  23. Zhao K, He F, Huang Z, Wei G, Zheng A, Li H, Zhao Z (2016) Perovskite-type oxides LaFe1-xCoxO3 for chemical looping steam methane reforming to syngas and hydrogen co-production. Appl Energy 168:193–203. https://doi.org/10.1016/j.apenergy.2016.01.052

    Article  CAS  Google Scholar 

  24. Tseng P, Lee J, Friley P (2005) A hydrogen economy: opportunities and challenges. Energy 30:2703–2720. https://doi.org/10.1016/j.energy.2004.07.015

    Article  Google Scholar 

  25. Chen X, Zhang S, Li S, Zhang C, Pan J, Murphy A, Shao T (2021) Temperature-independent, nonoxidative methane conversion in nanosecond repetitively pulsed DBD plasma. Sustain Energy Fuels 5:787–800. https://doi.org/10.1039/d0se01593h

    Article  CAS  Google Scholar 

  26. Ioannou I, D’Angelo S, Galan-Martin A, Pozo C, Perez-Ramirez J, Guillen-Gosalbez G (2021) Process modelling and life cycle assessment coupled with experimental work to shape the future sustainable production of chemicals and fuels. Reaction Chem Eng 6:1179–1194. https://doi.org/10.1039/d0re00451k

    Article  CAS  Google Scholar 

  27. Bogaerts A, Tu X, Whitehead J, Centi G, Lefferts L, Guaitella O, Azzolina-Jury F, Kim H, Murphy A, Schneider W, Nozaki T, Hicks J, Rousseau A, Thevenet F, Khacef A, Carreon M (2020) The 2020 plasma catalysis roadmap. J Phys D. https://doi.org/10.1088/1361-6463/ab9048

    Article  Google Scholar 

  28. Sun M, Wu T, Dougherty A, Lam M, Huang B, Li Y (2021) Self-validated machine learning study of graphdiyne-based dual atomic catalyst. Adv Energy Mater 11:2003796. https://doi.org/10.1002/aenm.202003796

    Article  CAS  Google Scholar 

  29. Leonard K, Hasan F, Sneddon H, You F (2021) Can artificial intelligence and machine learning be used to accelerate sustainable chemistry and engineering? ACS Sustain Chem Eng 9:6126–6129. https://doi.org/10.1021/acssuschemeng.1c02741

    Article  CAS  Google Scholar 

  30. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366. https://doi.org/10.1016/0893-6080(89)90020-8

    Article  Google Scholar 

  31. Wang Y, Liao Z, Mathieu S, Bin F, Tu X (2021) Prediction and evaluation of plasma arc reforming of naphthalene using a hybrid machine learning model. J Hazard Mater 404:123965. https://doi.org/10.1016/j.jhazmat.2020.123965

    Article  CAS  PubMed  Google Scholar 

  32. Vitha M, Carr P (2006) The chemical interpretation and practice of linear solvation energy relationships in chromatography. J Chromatogr A 1126:143–194. https://doi.org/10.1016/j.chroma.2006.06.074

    Article  CAS  PubMed  Google Scholar 

  33. Ouyang R, Curtarolo S, Ahmetcik E, Scheffler M, Ghiringhelli L (2018) SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Phys Rev Mater 2:083802. https://doi.org/10.1103/PhysRevMaterials.2.083802

    Article  CAS  Google Scholar 

  34. Xu P, Chang D, Lu T, Li L, Li M, Lu W (2022) Search for ABO(3) type ferroelectric perovskites with targeted multi-properties by machine learning strategies. J Chem Inf Model 62:5038–5049. https://doi.org/10.1021/acs.jcim.1c00566

    Article  CAS  PubMed  Google Scholar 

  35. Bartel C, Sutton C, Goldsmith B, Ouyang R, Musgrave C, Ghiringhelli L, Scheffler M (2019) New tolerance factor to predict the stability of perovskite oxides and halides. Sci Adv 5:eaav0693. https://doi.org/10.1126/sciadv.aav0693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ren Y, Yu C, Tan X, Wei Q, Wang Z, Ni L, Wang L, J Qiu (2022) Strategies to activate inert nitrogen molecules for efficient ammonia electrosynthesis: current status, challenges, and perspectives. Energy Environ Sci 15:2776–2805. https://doi.org/10.1039/d2ee00358a

    Article  CAS  Google Scholar 

  37. Angelis D, Sofos F, Karakasidis T (2023) Artificial intelligence in physical sciences: symbolic regression trends and perspectives. Arch Comput Methods Eng 30:3845–3865. https://doi.org/10.1007/s11831-023-09922-z

    Article  Google Scholar 

  38. Zhu X, Liu S, Cai Y, Gao X, Zhou J, Zheng C, Tu X (2016) Post-plasma catalytic removal of methanol over Mn-Ce catalysts in an atmospheric dielectric barrier discharge. Appl Catal B-Environ 183:124–132. https://doi.org/10.1016/j.apcatb.2015.10.013

    Article  CAS  Google Scholar 

  39. Ouyang R, Curtarolo S, Ahmetcik E, Scheffler M, Ghiringhelli LM (2018) SISSO: a compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates. Phys Rev Mater. https://doi.org/10.1103/PhysRevMaterials.2.083802

    Article  Google Scholar 

  40. Andersen M, Reuter K (2021) Adsorption enthalpies for catalysis modeling through machine-learned descriptors. Acc Chem Res 54:2741–2749. https://doi.org/10.1021/acs.accounts.1c00153

    Article  CAS  PubMed  Google Scholar 

  41. Bartel C, Millican S, Deml A, Rumptz J, Tumas W, Weimer A, Lany S, Stevanovic V, Musgrave C, Holder A (2018) Physical descriptor for the Gibbs energy of inorganic crystalline solids and temperature-dependent materials chemistry. Nat Commun 9:4168. https://doi.org/10.1038/s41467-018-06682-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mizushima T, Matsumoto K, Sugoh J, Ohkita H, Kakuta N (2004) Tubular membrane-like catalyst for reactor with dielectric-barrier-discharge plasma and its performance in ammonia synthesis. Appl Catal A 265:53–59. https://doi.org/10.1016/j.apcata.2004.01.002

    Article  CAS  Google Scholar 

  43. ML Carreon (2019) Plasma catalytic ammonia synthesis: state of the art and future directions. J Phys D 52:483001. https://doi.org/10.1088/1361-6463/ab3b2c

    Article  CAS  Google Scholar 

  44. Kiyohara S, Miyata T, Tsuda K, Mizoguchi T (2018) Data-driven approach for the prediction and interpretation of core-electron loss spectroscopy. Sci Rep 8:13548. https://doi.org/10.1038/s41598-018-30994-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cuny J, Xie Y, Pickard C, Hassanali A (2016) Ab Initio Quality NMR parameters in solid-state materials using a high-dimensional neural-network representation. J Chem Theory Comput 12:765–773. https://doi.org/10.1021/acs.jctc.5b01006

    Article  CAS  PubMed  Google Scholar 

  46. Hu X, Zhang S, Dou L, Gao Y, Zhang C, Shao T (2023) Plasma-enabled sustainable ammonia synthesis at atmospheric pressure: the role of catalysts on synergistic effect. Catal Today. https://doi.org/10.1016/j.cattod.2023.114245

    Article  Google Scholar 

  47. Pinhão N, Moura A, Branco JB, Neves J (2016) Influence of gas expansion on process parameters in non-thermal plasma plug-flow reactors: a study applied to dry reforming of methane. Int J Hydrog Energy 41:9245–9255. https://doi.org/10.1016/j.ijhydene.2016.04.148

    Article  CAS  Google Scholar 

  48. Dobbelaar MCF, Bessieres D, Arnaud-Cormos D, Leveque P, J Paillol (2022) Electrical parameters of Nanosecond Dielectric Barrier discharges (nsDBD). IEEE Trans Plasma Sci 50:853–862. https://doi.org/10.1109/tps.2022.3152901

    Article  CAS  Google Scholar 

  49. Sun H, Zhang S, Gao Y, Zhang C, Shao T (2019) Self-heating effect on stability of a nanosecond pulsed DBD interacting with heptane and methylnaphthalene as heavy oil model compounds. IEEE Trans Dielectr Electr Insul 26:431–438. https://doi.org/10.1109/tdei.2018.007745

    Article  CAS  Google Scholar 

  50. Liu F, Chu H, Zhuang Y, Fang Z, Zhou R, Cullen PJ et al (2021) Uniform and stable plasma reactivity: effects of nanosecond pulses and oxygen addition in atmospheric-pressure dielectric barrier discharges. J Appl Phys. https://doi.org/10.1063/5.0031220

    Article  Google Scholar 

  51. Davies H, Guerra V, van der Woude M, Gans T, O’Connell D, Gibson AR (2023) Vibrational kinetics in repetitively pulsed atmospheric pressure nitrogen discharges: average-power-dependent switching behaviour. Plasma Sources Sci Technol 32:014003. https://doi.org/10.1088/1361-6595/aca9f4

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mao X, Zhong H, Zhang T, Starikovskiy A, Ju Y (2022) Modeling of the effects of non-equilibrium excitation and electrode geometry on H2/air ignition in a nanosecond plasma discharge. Combust Flame. https://doi.org/10.1016/j.combustflame.2022.112046

    Article  Google Scholar 

  53. Nozaki T, Okazaki K (2013) Non-thermal plasma catalysis of methane: principles, energy efficiency, and applications. Catal Today 211:29–38. https://doi.org/10.1016/j.cattod.2013.04.002

    Article  CAS  Google Scholar 

  54. Hegemann D (2023) Plasma activation mechanisms governed by specific energy input: potential and perspectives. Plasma Process Polym 20:e2300010. https://doi.org/10.1002/ppap.202300010

    Article  CAS  Google Scholar 

  55. Pourali N, Hessel V, Rebrov EV (2022) The effects of pulse shape on the selectivity and production rate in non-oxidative coupling of methane by a micro-DBD reactor. Plasma Chem Plasma Process 42:619–640. https://doi.org/10.1007/s11090-022-10242-6

    Article  CAS  Google Scholar 

  56. Wang X, Gao Y, Zhang S, Sun H, Li J, Shao T (2019) Nanosecond pulsed plasma assisted dry reforming of CH4: the effect of plasma operating parameters. Appl Energy 243:132–144. https://doi.org/10.1016/j.apenergy.2019.03.193

    Article  CAS  Google Scholar 

  57. Hong J, Prawer S, Murphy A (2018) Plasma catalysis as an alternative route for ammonia production: status, mechanisms, and prospects for progress. ACS Sustain Chem Eng 6:15–31. https://doi.org/10.1021/acssuschemeng.7b02381

    Article  CAS  Google Scholar 

  58. Neyts E, Ostrikov K, Sunkara M, Bogaerts A (2015) Plasma catalysis: synergistic effects at the Nanoscale. Chem Soc Rev 115:13408–13446. https://doi.org/10.1021/acs.chemrev.5b00362

    Article  CAS  Google Scholar 

  59. Iwamoto M, Akiyama M, Aihara K, Deguchi T (2017) Ammonia synthesis on wool-like Au, Pt, Pd, Ag, or Cu electrode catalysts in nonthermal atmospheric-pressure plasma of N2 and H2. ACS Catalysis 7:6924–6929. https://doi.org/10.1021/acscatal.7b01624

    Article  CAS  Google Scholar 

  60. Xu S, Chen H, Hardacre C, Fan X (2021) Non-thermal plasma catalysis for CO2 conversion and catalyst design for the process. J Phys D 54:233001. https://doi.org/10.1088/1361-6463/abe9e1

    Article  CAS  Google Scholar 

  61. Wang X, Du X, Chen K, Zheng Z, Liu Y, Shen X et al (2023) Predicting the Ammonia Synthesis performance of plasma catalysis using an Artificial neural network model. ACS Sustain Chem Eng 11:4543–4554. https://doi.org/10.1021/acssuschemeng.2c04715

    Article  CAS  Google Scholar 

  62. DH Wolpert (1996) The lack of a Priori distinctions between learning algorithms. Neural Comput 8:1341–1390. https://doi.org/10.1162/neco.1996.8.7.1341

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Fund for Distinguished Young Scholars (Grant No. 51925703), the National Natural Science Foundation of China (Grant Nos. 52077205, 52007178, and 52177164), and the Youth Innovation Promotion Association of CAS (Grant No. 2022136).

Funding

Tao Shao: National Science Fund for Distinguished Young Scholars (Grant No. 51925703). Shuai Zhang:  National Natural Science Foundation of China (Grant No. 52077205) and Youth Innovation Promotion Association of CAS (Grant No. 2022136). Xiucui Hu:  National Natural Science Foundation of China (Grant Nos. 52007178 and 52177164).

Author information

Authors and Affiliations

Authors

Contributions

XZ and SZ performed the investigation, and data analysis, and wrote the main manuscript. XH designed and set up the plasma reactor systems. TS performed result analysis and discussion. All authors reviewed the manuscript.

Corresponding author

Correspondence to Tao Shao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Zhang, S., Hu, X. et al. Dielectric Barrier Discharge Plasma-Enabled Energy Conversion Under Multiple Operating Parameters: Machine Learning Optimization. Plasma Chem Plasma Process 44, 667–685 (2024). https://doi.org/10.1007/s11090-023-10434-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-023-10434-8

Keywords

Navigation