Skip to main content

Advertisement

Log in

Theoretical Prediction and Experimental Measurement of the Evolution of Polymerization Shrinkage Stress Under Different Photocuring Protocols

  • Research paper
  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Background

The service quality and life of photopolymerized materials are dramatically impaired by shrinkage stress generated during the polymerization process. Several soft-start photocuring protocols including two-step, ramp, and pulse delay have been proposed to reduce the shrinkage stress. However, the mechanism for the shrinkage stress reduction by soft-start photocuring remains largely elusive.

Objective

This study aims to explore the mechanism for shrinkage stress reduction in soft-start photocuring protocols and then propose a universal strategy to maximize the stress reduction.

Method

A theory-experiment-combined method was developed to investigate the effect of soft-start photocuring protocols on the shrinkage stress evolution. Shrinkage stresses under different protocols were measured by a standardized cantilever beam-based instrument. An improved theoretical model incorporating the evolutions of the reaction kinetics and material properties was developed to predict the shrinkage stress evolution under different curing protocols.

Results

Compared to the standard protocol with a constant photo-irradiation, all the soft-start photocuring protocols could effectively reduce the shrinkage stress and the two-step protocol achieved a maximum reduction of 25% among all experimental conditions. The elastic modulus of photopolymers coincided under the same radiant exposure and irradiation intensity. Unlike previous studies focusing on the mechanical properties of the photopolymers, we found that the shrinkage stress reduction by soft-start photocuring protocols could be attributed to a delayed gelation and a reduction in the peak temperature change after gelation. Based on these mechanisms, adding a delay time before the gelation was proposed as an effective strategy to reduce the shrinkage stress, leading to a reduction of up to more than 40% according to the theoretical predictions. Additionally, the timing for introducing the delay and its duration can be effectively and conveniently determined by monitoring the real-time evolution of shrinkage stress in the standard photocuring protocol.

Conclusions

This theory-experiment-combined study not only uncovers that the shrinkage stress reduction by soft-start photocuring protocol is attributed to the delay in the gelation and the reduction of the peak temperature change after the gelation but also proposes an effective approach to mitigate shrinkage stress by adding a delay time before the gelation. Such a strategy for maximizing the shrinkage stress reduction while maintaining the mechanical and curing properties is to guide the practical applications of photopolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Nguyen KT, West JL (2002) Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 23(22):4307–4314. https://doi.org/10.1016/s0142-9612(02)00175-8

    Article  CAS  PubMed  Google Scholar 

  2. Wang ZZ, Wang K, Huang HB et al (2018) Bioinspired Wear-resistant and Ultradurable functional gradient coatings. Small 14(41):1802717. https://doi.org/10.1002/smll.201802717

    Article  CAS  Google Scholar 

  3. Sani ES, Kheirkhah A, Rana D et al (2019) Sutureless repair of corneal injuries using naturally derived bioadhesive hydrogels. Sci Adv 5(3):eaav1281. https://doi.org/10.1126/sciadv.aav1281

    Article  ADS  CAS  Google Scholar 

  4. Regehly M, Garmshausen Y, Reuter M et al (2020) Xolography for linear volumetric 3D printing. Nature 588(7839):620-+. https://doi.org/10.1038/s41586-020-3029-7

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Huang S, Podgorski M, Zhang X et al (2018) Dental restorative materials based on thiol-Michael Photopolymerization. J Dent Res 97(5):530–536. https://doi.org/10.1177/0022034518755718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lu B, Xiao P, Sun MZ et al (2007) Reducing volume shrinkage by low-temperature photopolymerization. J Appl Polym Sci 104(2):1126–1130. https://doi.org/10.1002/app.25758

    Article  CAS  Google Scholar 

  7. Algamaiah H, Silikas N, Watts DC (2021) Polymerization shrinkage and shrinkage stress development in ultra-rapid photo-polymerized bulk fill resin composites. Dent Mater 37(4):559–567. https://doi.org/10.1016/j.dental.2021.02.012

    Article  CAS  PubMed  Google Scholar 

  8. Sun GQ, Wu XY, Liu R (2021) A comprehensive investigation of acrylates photopolymerization shrinkage stress from micro and macro perspectives by real time MIR-photo-rheology. Prog Org Coat 155:106229. https://doi.org/10.1016/j.porgcoat.2021.106229

    Article  CAS  Google Scholar 

  9. Zhang Q, Weng S, Hamel CM et al (2021) Design for the reduction of volume shrinkage-induced distortion in digital light processing 3D printing. Extreme Mech Lett 48:101403. https://doi.org/10.1016/j.eml.2021.101403

    Article  Google Scholar 

  10. Shah PK, Stansbury JW (2021) Photopolymerization shrinkage-stress reduction in polymer-based dental restoratives by surface modification of fillers. Dent Mater 37(4):578–587. https://doi.org/10.1016/j.dental.2021.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang K, Wang Z (2023) Shrinkage stress evolution during photopolymerization: theory and experiments. J Mech Phys Solids 178:105350. https://doi.org/10.1016/j.jmps.2023.105350

    Article  CAS  Google Scholar 

  12. Karalekas D, Rapti D, Gdoutos EE et al (2002) Investigation of shrinkage-induced stresses in stereolithography photo-curable resins. Exp Mech 42(4):439–444

    Article  Google Scholar 

  13. Watts DC, Al HA (1999) Intrinsic 'soft-start' polymerisation shrinkage-kinetics in an acrylate-based resin-composite. Dent Mater 15(1):39–45. https://doi.org/10.1016/s0109-5641(99)00012-3

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Charton C, Colon P, Pla F (2007) Shrinkage stress in light-cured composite resins: influence of material and photoactivation mode. Dent Mater 23(8):911–920. https://doi.org/10.1016/j.dental.2006.06.034

    Article  CAS  PubMed  Google Scholar 

  15. Kubo S, Yokota H, Yokota H et al (2004) The effect of light-curing modes on the microleakage of cervical resin composite restorations. J Dent 32(3):247–254. https://doi.org/10.1016/j.jdent.2003.11.005

    Article  CAS  PubMed  Google Scholar 

  16. Unterbrink GL, Muessner R (1995) Influence of light intensity on two restorative systems. J Dent 23(3):183–189. https://doi.org/10.1016/0300-5712(95)93577-o

    Article  CAS  PubMed  Google Scholar 

  17. Feilzer AJ, Degee AJ, Davidson CL (1990) Quantitative determination of stress reduction by flow in composite restorations. Dent Mater 6(3):167–171. https://doi.org/10.1016/0109-5641(90)90023-8

    Article  CAS  PubMed  Google Scholar 

  18. Yue L, Montgomery SM, Sun X et al (2023) Single-vat single-cure grayscale digital light processing 3D printing of materials with large property difference and high stretchability. Nat Commun 14(1):1251. https://doi.org/10.1038/s41467-023-36909-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lavigueur C, Zhu XX (2012) Recent advances in the development of dental composite resins. RSC Adv 2(1):59–63. https://doi.org/10.1039/c1ra00922b

    Article  ADS  CAS  Google Scholar 

  20. Uno S, Asmussen E (1991) Marginal adaptation of a restorative resin polymerized at reduced rate. Eur J Oral Sci 99(5):440–444. https://doi.org/10.1111/j.1600-0722.1991.tb01052.x

    Article  CAS  Google Scholar 

  21. Sakaguchi RL, Berge HX (1998) Reduced light energy density decreases post-gel contraction while maintaining degree of conversion in composites. J Dent 26(8):695–700. https://doi.org/10.1016/s0300-5712(97)00048-1

    Article  CAS  PubMed  Google Scholar 

  22. Lu H, Stansbury JW, Bowman CN (2005) Impact of curing protocol on conversion and shrinkage stress. J Dent Res 84(9):822–826. https://doi.org/10.1177/154405910508400908

    Article  CAS  PubMed  Google Scholar 

  23. Witzel MF, Calheiros FC, Goncalves F et al (2005) Influence of photoactivation method on conversion, mechanical properties, degradation in ethanol and contraction stress of resin-based materials. J Dent 33(9):773–779. https://doi.org/10.1016/j.jdent.2005.02.005

    Article  CAS  PubMed  Google Scholar 

  24. Mehl A, Hickel R, Kunzelmann KH (1997) Physical properties and gap formation of light-cured composites with and without 'softstart-polymerization'. J Dent 25(3–4):321–330. https://doi.org/10.1016/s0300-5712(96)00044-9

    Article  CAS  PubMed  Google Scholar 

  25. Lim BS, Ferracane JL, Sakaguchi RL et al (2002) Reduction of polymerization contraction stress for dental composites by two-step light-activation. Dent Mater 18(6):436–444. https://doi.org/10.1016/s0109-5641(01)00066-5

    Article  CAS  PubMed  Google Scholar 

  26. Palagummi SV, Hong T, Jiang L et al (2021) Thermal shrinkage reveals the feasibility of pulse-delay photocuring technique. Dent Mater 37(12):1772–1782. https://doi.org/10.1016/j.dental.2021.09.007

    Article  CAS  PubMed  Google Scholar 

  27. Chiang MYM, Giuseppetti AAM, Qian J et al (2011) Analyses of a cantilever-beam based instrument for evaluating the development of polymerization stresses. Dent Mater 27(9):899–905. https://doi.org/10.1016/j.dental.2011.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang ZZ, Landis FA, Giuseppetti AAM et al (2014) Simultaneous measurement of polymerization stress and curing kinetics for photo-polymerized composites with high filler contents. Dent Mater 30(12):1316–1324. https://doi.org/10.1016/j.dental.2014.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang K, Wang ZZ (2023) An improved method for accurate measurement of material shrinkage during Photopolymerization. Exp Mech 63(1):125–138. https://doi.org/10.1007/s11340-022-00904-z

    Article  CAS  Google Scholar 

  30. Ma HM, Gao XL, Reddy JN (2008) A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J Mech Phys Solids 56(12):3379–3391. https://doi.org/10.1016/j.jmps.2008.09.007

    Article  ADS  MathSciNet  Google Scholar 

  31. Sirovica S, Skoda MWA, Podgorski M et al (2019) Structural evidence that the polymerization rate dictates order and intrinsic strain generation in photocured methacrylate biomedical polymers. Macromolecules 52(14):5377–5388. https://doi.org/10.1021/acs.macromol.9b00133

    Article  ADS  CAS  Google Scholar 

  32. Oyen ML (2006) Analytical techniques for indentation of viscoelastic materials. Philos Mag 86(33–35):5625–5641. https://doi.org/10.1080/14786430600740666

    Article  ADS  CAS  Google Scholar 

  33. Wang K, Li B, Ni K et al (2021) Optimal photoinitiator concentration for light-cured dental resins. Polym Test 94:107039. https://doi.org/10.1016/j.polymertesting.2020.107039

    Article  CAS  Google Scholar 

  34. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583. https://doi.org/10.1557/jmr.1992.1564

    Article  ADS  CAS  Google Scholar 

  35. Wu JT, Zhao Z, Hamel CM et al (2018) Evolution of material properties during free radical photopolymerization. J Mech Phys Solids 112:25–49. https://doi.org/10.1016/j.jmps.2017.11.018

    Article  ADS  MathSciNet  CAS  Google Scholar 

  36. Bowman CN, Kloxin CJ (2008) Toward an enhanced understanding and implementation of Photopolymerization reactions. AIChE J 54(11):2775–2795. https://doi.org/10.1002/aic.11678

    Article  ADS  CAS  Google Scholar 

  37. Johnson PM, Stansbury JW, Bowman CN (2008) Kinetic modeling of a comonomer photopolymerization system using high-throughput conversion data. Macromolecules 41(1):230–237. https://doi.org/10.1021/ma071383p

    Article  ADS  CAS  Google Scholar 

  38. Wu D, Huang YX, Zhang Q et al (2022) Initiation of surface wrinkling during photopolymerization. J Mech Phys Solids 162:104838. https://doi.org/10.1016/j.jmps.2022.104838

    Article  MathSciNet  CAS  Google Scholar 

  39. Asmussen S, Arenas G, Cook WD et al (2009) Photoinitiation rate profiles during polymerization of a dimethacrylate-based resin photoinitiated with camphorquinone/amine. Influence of initiator photobleaching rate. Eur Polym J 45(2):515–522. https://doi.org/10.1016/j.eurpolymj.2008.11.005

    Article  CAS  Google Scholar 

  40. Jariwala AS, Ding F, Boddapati A et al (2011) Modeling effects of oxygen inhibition in mask-based stereolithography. Rapid Prototyping J 17(3):168–175. https://doi.org/10.1108/13552541111124734

    Article  Google Scholar 

  41. Dickey MD, Willson CG (2006) Kinetic parameters for step and flash imprint lithography photopolymerization. AIChE J 52(2):777–784. https://doi.org/10.1002/aic.10666

    Article  ADS  CAS  Google Scholar 

  42. Silikas N, Eliades G, Watts DC (2000) Light intensity effects on resin-composite degree of conversion and shrinkage strain. Dent Mater 16(4):292–296. https://doi.org/10.1016/s0109-5641(00)00020-8

    Article  CAS  PubMed  Google Scholar 

  43. Silikas N, Al-Kheralf A, Watts DC (2005) Influence of P/L ratio and peroxide/amine concentrations on shrinkage-strain kinetics during setting of PMMA/MMA biomaterial formulations. Biomaterials 26(2):197–204. https://doi.org/10.1016/j.biomaterials.2004.02.028

    Article  CAS  PubMed  Google Scholar 

  44. Jacquet E, Trivaudey F, Varchon D (2000) Calculation of the transverse modulus of a unidirectional composite material and of the modulus of an aggregate. Application of the rule of mixtures. Compos Sci Technol 60(3):345–350. https://doi.org/10.1016/s0266-3538(99)00128-1

    Article  Google Scholar 

  45. Ma J, Mu XM, Bowman CN et al (2014) A photoviscoplastic model for photoactivated covalent adaptive networks. J Mech Phys Solids 70:84–103. https://doi.org/10.1016/j.jmps.2014.05.008

    Article  ADS  MathSciNet  CAS  Google Scholar 

  46. O'Brien DJ, Mather PT, White SR (2001) Viscoelastic properties of an epoxy resin during cure. J Compos Mater 35(10):883–904. https://doi.org/10.1106/hlym-5cm7-bp9n-l1y1

    Article  CAS  Google Scholar 

  47. Guimaraes BSS, Guiguer EL, Bianchi O et al (2022) Non-isothermal cure kinetics of an anhydride-cured cycloaliphatic/aromatic epoxy system in the presence of a reactive diluent. Thermochim Acta 717:106229. https://doi.org/10.1016/j.tca.2022.179351

    Article  CAS  Google Scholar 

  48. Sarkar S, Baker PJ, Chan EP et al (2017) Quantifying the sensitivity of the network structure and properties from simultaneous measurements during photopolymerization. Soft Matter 13(21):3975–3983. https://doi.org/10.1039/c7sm00419b

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Anseth KS, Kline LM, Walker TA et al (1995) Reaction-kinetics and volume relaxation during polymerizations of multiethylene glycol dimethacrylates. Macromolecules 28(7):2491–2499. https://doi.org/10.1021/ma00111a050

    Article  ADS  CAS  Google Scholar 

  50. Lovell LG, Newman SM, Bowman CN (1999) The effects of light intensity, temperature, and comonomer composition on the polymerization behavior of dimethacrylate dental resins. J Dent Res 78(8):1469–1476. https://doi.org/10.1177/00220345990780081301

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Grant Nos. 12272276 and 11972264), the Fundamental Research Funds for the Central Universities (2042023kf0194), the Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515010237), and the Shenzhen Science and Technology Program (No. JCYJ20220530140606013). The authors acknowledge the facility supports from the Center of Complex Medium Multiscale Mechanics (C2M3) of Wuhan University.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization:Zhengzhi Wang, Kun Wang; Methodology: Kun Wang; Validation: Kun Wang; Writing – original draft preparation: Kun Wang; Writing – review and editing: Zhengzhi Wang.

Corresponding author

Correspondence to Z.Z. Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Wang, Z. Theoretical Prediction and Experimental Measurement of the Evolution of Polymerization Shrinkage Stress Under Different Photocuring Protocols. Exp Mech 64, 225–244 (2024). https://doi.org/10.1007/s11340-023-01019-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-023-01019-9

Keywords

Navigation