Skip to main content
Log in

Spatio-temporal variability and possible source identification of criteria pollutants from Ahmedabad-a megacity of Western India

  • Research
  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

This study addresses the spatio-temporal variability and plausible sources of criteria air pollutants in the Western Indian city-Ahmedabad. The air pollutants PM10, PM2.5, O3, NO2, SO2, and CO have been analyzed at ten locations in Ahmedabad from 2017 to 2019. The seasonal variability indicates that the air pollutant concentration is highest during winter, followed by pre-monsoon, post-monsoon, and monsoon seasons. The concentration of PM2.5 (59.52 ± 16.68–89.72 ± 20.68) and PM10 (107.25 ± 30.43–176.04 ± 38.34) crosses the National Ambient Air Quality Standards (NAAQS) in all seasons. However, the seasonal difference from winter to pre-monsoon is not highly significant (p > 0.05), indicating that the pollution remains fairly similar during these two seasons. The spatial variability of air pollutants over Ahmedabad indicates that the concentration is highest in the south and central region of Ahmedabad and lowest at the east location. The Ventilation Coefficient (VC) has been used to understand the dispersion of air pollutants. The K-means clustering was performed to assess the locations within Ahmedabad with similar air pollutants sources followed by source identification using Principal Component Analysis-Multiple Linear Regression method (PCA-MLR) of 5 clusters. The different locations identified were industrial, residential, and traffic which mainly contribute to the air pollutants in Ahmedabad city. The health risk assessment indicates PMs are the leading pollutant and causing excess risk (ER > 1) at all the locations. With the help of the different statistical techniques, it helps in ascertaining the hotspots of air pollution in a region which will be beneficial in studying health exposure and for policymakers to adopt mitigation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

Data and material can be made available on request.

Code availability

Codes can be made available on request.

References

  • Alexandrino, K., Zalakeviciute, R., Viteri, F.: Seasonal variation of the criteria air pollutants concentration in an urban area of a high-altitude city. Int. J. Environ. Sci. Technol. 18, 1167–1180 (2021). https://doi.org/10.1007/s13762-020-02874-y

    Article  Google Scholar 

  • Althuwaynee, O.F., Pokharel, B., Aydda, A., Balogun, A.L., Kim, S.W., Park, H.J.: Spatial identification and temporal prediction of air pollution sources using conditional bivariate probability function and time series signature. J. Expo. Sci. Environ. Epidemiol. 31, 709–726 (2021). https://doi.org/10.1038/s41370-020-00271-8

    Article  Google Scholar 

  • Ambade, B., Sankar, T.K., Panicker, A.S., Gautam, A.S., Gautam, S.: Characterization, seasonal variation, source apportionment and health risk assessment of black carbon over an urban region of East India. Urban Clim. 38, (2021). https://doi.org/10.1016/j.uclim.2021.100896

  • Amini, H., Hosseini, V., Schindler, C., Hassankhany, H., Yunesian, M., Henderson, S.B., Künzli, N.: Spatiotemporal description of BTEX volatile organic compounds in a Middle Eastern megacity: Tehran Study of Exposure Prediction for Environmental Health Research (Tehran SEPEHR). Environ. Pollut. 226, 219–229 (2017). https://doi.org/10.1016/j.envpol.2017.04.027

    Article  Google Scholar 

  • Begum, B.A., Paul, S.K., Dildar Hossain, M., Biswas, S.K., Hopke, P.K.: Indoor air pollution from particulate matter emissions in different households in rural areas of Bangladesh. Build. Environ. 44, 898–903 (2009). https://doi.org/10.1016/j.buildenv.2008.06.005

    Article  Google Scholar 

  • Bhuyan, P.K., Bharali, C., Pathak, B., Kalita, G.: The role of precursor gases and meteorology on temporal evolution of O3 at a tropical location in northeast India. Environ. Sci. Pollut. Res. 21, 6696–6713 (2014). https://doi.org/10.1007/s11356-014-2587-3

    Article  Google Scholar 

  • Cao, Q., Wang, H., Chen, G.: Source Apportionment of PAHs Using Two Mathematical Models for Mangrove Sediments in Shantou Coastal Zone. China. Estuaries and Coasts. 34, 950–960 (2011). https://doi.org/10.1007/s12237-011-9397-3

    Article  Google Scholar 

  • Carslaw, D.C., Beevers, S.D.: Characterising and understanding emission sources using bivariate polar plots and k-means clustering. Environ Model Softw. 40, 325–329 (2013). https://doi.org/10.1016/j.envsoft.2012.09.005

    Article  Google Scholar 

  • Chelani, A.B., Gautam, S.: Fractality in PM2.5 Concentrations During the Dry and Wet Season over Indo-Gangetic Plain, India. Water Air Soil Pollut. 234, (2023). https://doi.org/10.1007/s11270-023-06521-3

  • Chen, Y., Zhou, Y., Zhao, X.: PM2.5 over North China based on MODIS AOD and effect of meteorological elements during. 2003–2015 (2020)

  • Dehghan, A., Khanjani, N., Bahrampour, A., Goudarzi, G., Yunesian, M.: The relation between air pollution and respiratory deaths in Tehran, Iran- using generalized additive models. BMC Pulm. Med. 18, 1–9 (2018). https://doi.org/10.1186/s12890-018-0613-9

    Article  Google Scholar 

  • Dominick, D., Juahir, H., Latif, M.T., Zain, S.M., Aris, A.Z.: Spatial assessment of air quality patterns in Malaysia using multivariate analysis. Atmos. Environ. 60, 172–181 (2012). https://doi.org/10.1016/j.atmosenv.2012.06.021

    Article  Google Scholar 

  • Dumka, U.C., Gautam, A.S., Tiwari, S., Mahar, D.S., Attri, S.D., Chakrabarty, R.K., Permita, P., Hopke, P.K., Hooda, R.: Evaluation of urban ozone in the Brahmaputra River Valley. Atmos. Pollut. Res. 11, 610–618 (2020). https://doi.org/10.1016/j.apr.2019.12.013

    Article  Google Scholar 

  • Finch, J., Conklin, D.J.: Air Pollution-Induced Vascular Dysfunction: Potential Role of Endothelin-1 (ET-1) System. Cardiovasc. Toxicol. 16, 260–275 (2016). https://doi.org/10.1007/s12012-015-9334-y

    Article  Google Scholar 

  • Franceschi, F., Cobo, M., Figueredo, M.: Discovering relationships and forecasting PM10 and PM2.5 concentrations in Bogotá Colombia, using Artificial Neural Networks, Principal Component Analysis, and k-means clustering. Atmos Pollut Res. 9, 912–922 (2018). https://doi.org/10.1016/j.apr.2018.02.006

  • Gautam, A.S., Kumar, S., Gautam, S., Singh, K., Ram, K., Siingh, D., Ambade, B., Sharma, M.: Regional air quality: biomass burning impacts of SO2 emissions on air quality in the Himalayan region of Uttarakhand. India. Air Qual Atmos Health. (2023). https://doi.org/10.1007/s11869-023-01426-w

    Article  Google Scholar 

  • Ghozikali, M.G., Mosaferi, M., Safari, G.H., Jaafari, J.: Effect of exposure to O3, NO2, and SO2 on chronic obstructive pulmonary disease hospitalizations in Tabriz. Iran. Environmental Science and Pollution Research. 22, 2817–2823 (2015). https://doi.org/10.1007/s11356-014-3512-5

    Article  Google Scholar 

  • Govender, P., Sivakumar, V.: Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review. 1980–2019, (2020)

  • Guo, H., Sahu, S.K., Kota, S.H., Zhang, H.: Characterization and health risks of criteria air pollutants in Delhi, 2017. Chemosphere 225, 27–34 (2019). https://doi.org/10.1016/j.chemosphere.2019.02.154

    Article  Google Scholar 

  • Hartigan, J.A., Wong, M A.: Algorithm AS 136: A k-means clustering algorithm. Appl. Stat. 28, 100–108 (1979)

  • Huang, Y., Deng, M., Wu, S., Japenga, J., Li, T., Yang, X., He, Z.: A modified receptor model for source apportionment of heavy metal pollution in soil. J. Hazard. Mater. 354, 161–169 (2018). https://doi.org/10.1016/j.jhazmat.2018.05.006

    Article  Google Scholar 

  • Jain, S., Sharma, S.K., Choudhary, N., Masiwal, R., Saxena, M., Sharma, A., Mandal, T.K., Gupta, A., Gupta, N.C., Sharma, C.: Chemical characteristics and source apportionment of PM2.5 using PCA/APCS, UNMIX, and PMF at an urban site of Delhi, India. Environ. Sci. Pollut. Res. 24, 14637–14656 (2017). https://doi.org/10.1007/s11356-017-8925-5

  • Jain, S., Sharma, S.K., Mandal, T.K., Saxena, M.: Source apportionment of PM10 in Delhi, India using PCA/APCS. UNMIX and PMF. Particuology. 37, 107–118 (2018). https://doi.org/10.1016/j.partic.2017.05.009

    Article  Google Scholar 

  • Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J., Kolehmainen, M.: Methods for imputation of missing values in air quality data sets. Atmos Environ. 38, 2895–2907 (2004). https://doi.org/10.1016/j.atmosenv.2004.02.026

    Article  Google Scholar 

  • Kalbande, R., Bano, S., Beig, G.: Benzene and Toluene from Stubble Burning and Their Implications for Ozone Chemistry and Human Health in the Indo-Gangetic Plain Region. ACS Earth Space Chem. 5, 3226–3233 (2021). https://doi.org/10.1021/acsearthspacechem.1c00283

    Article  Google Scholar 

  • Khan, M.B., Setu, S., Sultana, N., Gautam, S., Begum, B.A., Salam, M.A., Jolly, Y.N., Akter, S., Rahman, M.M., Shil, B.C., Afrin, S.: Street dust in the largest urban agglomeration: pollution characteristics, source apportionment and health risk assessment of potentially toxic trace elements. Stoch. Env. Res. Risk Assess. 37, 3305–3324 (2023). https://doi.org/10.1007/s00477-023-02432-1

    Article  Google Scholar 

  • Korhale, N., Anand, V., Beig, G.: Disparity in ozone trends under COVID-19 lockdown in a closely located coastal and hillocky metropolis of India. Air Qual Atmos Health. 14, 533–542 (2021). https://doi.org/10.1007/s11869-020-00958-9/Published

  • Kumar, R.P., Perumpully, S.J., Samuel, C., Gautam, S.: Exposure and health: A progress update by evaluation and scientometric analysis, (2023)

  • Liu, L., Ma, X., Wen, W., Sun, C., Jiao, J.: Characteristics and potential sources of wintertime air pollution in Linfen, China. Environ Monit Assess. 193, (2021). https://doi.org/10.1007/s10661-021-09036-8

  • Mahato, D.K., Sankar, T.K., Ambade, B., Mohammad, F., Soleiman, A.A., Gautam, S.: Burning of Municipal Solid Waste: An Invitation for Aerosol Black Carbon and PM2.5 Over Mid–Sized City in India. Aerosol Sci Eng. 7, 341–354 (2023). https://doi.org/10.1007/s41810-023-00184-7

  • Mandal, P., Upadhyay, R., Hasan, A.: Seasonal and spatial variation of Yamuna River water quality in Delhi. India. Environ Monit Assess. 170, 661–670 (2010). https://doi.org/10.1007/s10661-009-1265-2

    Article  Google Scholar 

  • Manju, A., Kalaiselvi, K., Dhananjayan, V., Palanivel, M., Banupriya, G.S., Vidhya, M.H., Panjakumar, K., Ravichandran, B.: Spatio-seasonal variation in ambient air pollutants and influence of meteorological factors in Coimbatore. Southern India. Air Qual Atmos Health. 11, 1179–1189 (2018). https://doi.org/10.1007/s11869-018-0617-x

    Article  Google Scholar 

  • Mohammadi, A., Azhdarpoor, A., Shahsavani, A., Tabatabaee, H.: Investigating the health effects of exposure to criteria pollutants using airq2.2.3 in Shiraz, Iran. Aerosol Air Qual Res. 16, 1035–1043 (2016). https://doi.org/10.4209/aaqr.2015.07.0434

  • MSME: Brief Industrial Profile of Ahmedabad District, Ministry of Micro, Small & Medium Enterprises. Ministry of MSME. Govt. of India. (2011)

  • Nie, D., Chen, M., Wu, Y., Ge, X., Hu, J., Zhang, K., Ge, P.: Characterization of fine particulate matter and associated health burden in Nanjing. Int. J. Environ. Res. Public Health 15, 1–12 (2018). https://doi.org/10.3390/ijerph15040602

    Article  Google Scholar 

  • Núñez-Alonso, D., Pérez-Arribas, L.V., Manzoor, S., Cáceres, J.O.: Statistical Tools for Air Pollution Assessment: Multivariate and Spatial Analysis Studies in the Madrid Region. J Anal Methods Chem. 2019, (2019). https://doi.org/10.1155/2019/9753927

  • Owoade, O.K., Abiodun, P.O., Omokungbe, O.R., Fawole, O.G., Olise, F.S., Popoola, O.O.M., Jones, R.L., Hopke, P.K.: Spatial-temporal variation and local source identification of air pollutants in a semi-urban settlement in nigeria using low-cost sensors. Aerosol Air Qual Res. 21, (2021). https://doi.org/10.4209/AAQR.200598

  • Pancholi, P., Kumar, A., Bikundia, D.S., Chourasiya, S.: An observation of seasonal and diurnal behavior of O3–NOx relationships and local/regional oxidant (OX = O3 + NO2) levels at a semi-arid urban site of western India. Sustainable Environment Research. 28, 79–89 (2018). https://doi.org/10.1016/j.serj.2017.11.001

    Article  Google Scholar 

  • Priya, S., Iqbal, J.: Assessment of NO2 concentrations over industrial state Jharkhand, at the time frame of pre, concurrent, and post-COVID-19 lockdown along with the meteorological behaviour: an overview from satellite and ground approaches. Environ. Sci. Pollut. Res. (2023). https://doi.org/10.1007/s11356-023-27236-2

    Article  Google Scholar 

  • Pu, X., Wang, T.J., Huang, X., Melas, D., Zanis, P., Papanastasiou, D.K., Poupkou, A.: Enhanced surface ozone during the heat wave of 2013 in Yangtze River Delta region. China. Science of the Total Environment. 603–604, 807–816 (2017). https://doi.org/10.1016/j.scitotenv.2017.03.056

    Article  Google Scholar 

  • Qiu, H., Yu, I.T.S., Tian, L., Wang, X., Tse, L.A., Tam, W., Wong, T.W.: Effects of coarse particulate matter on emergency hospital admissions for respiratory diseases: A time-series analysis in Hong Kong. Environ. Health Perspect. 120, 572–576 (2012). https://doi.org/10.1289/ehp.1104002

    Article  Google Scholar 

  • Rozbicka, K., Majewski, G., Rogula-Kozłowska, W., Rozbicki, T.: Tropospheric ozone assessment in urban environment – Warsaw case study of selected heat waves. J Atmos Sol Terr Phys. 209, (2020). https://doi.org/10.1016/j.jastp.2020.105418

  • Saxena, P., Sonwani, S.: Criteria Air Pollutants and their Impact on Environmental Health. (2019)

  • Sharma, S., Zhang, M., Anshika, Gao, J., Zhang, H., Kota, S.H.: Effect of restricted emissions during COVID-19 on air quality in India. Science of the Total Environment. 728, (2020). https://doi.org/10.1016/j.scitotenv.2020.138878

  • Shen, F., Zhang, L., Jiang, L., Tang, M., Gai, X., Chen, M., Ge, X.: Temporal variations of six ambient criteria air pollutants from 2015 to 2018, their spatial distributions, health risks and relationships with socioeconomic factors during 2018 in China. Environ Int. 137, 105556 (2020). https://doi.org/10.1016/j.envint.2020.105556

  • Wang, X.K., Lu, W.Z.: Seasonal variation of air pollution index: Hong Kong case study. Chemosphere 63, 1261–1272 (2006). https://doi.org/10.1016/j.chemosphere.2005.10.031

    Article  Google Scholar 

  • WHO: Health Effects of Particulate Matter. Health Effects Ambient Air Pollut. 115–137 (2000). https://doi.org/10.1007/978-1-4615-4569-9_10. Accessed 17 July 2023

  • WHO: Air pollution World Health Organization WHO (2021). https://www.who.int/health-topics/air-pollution#tab=tab_1. Accessed 17 July 2023

  • Yadav, M., Soni, K., Soni, B.K., Singh, N.K., Bamniya, B.R.: Source apportionment of particulate matter, gaseous pollutants, and volatile organic compounds in a future smart city of India. Urban Clim. 28, (2019). https://doi.org/10.1016/j.uclim.2019.100470

  • Yang, W.S., Zhao, H., Wang, X., Deng, Q., Fan, W.Y., Wang, L.: An evidence-based assessment for the association between long-term exposure to outdoor air pollution and the risk of lung cancer. Eur. J. Cancer Prev. 25, 163–172 (2016). https://doi.org/10.1097/CEJ.0000000000000158

    Article  Google Scholar 

  • Yang, Y., Ruan, Z., Wang, X., Yang, Y., Mason, T.G., Lin, H., Tian, L.: Short-term and long-term exposures to fine particulate matter constituents and health: A systematic review and meta-analysis. Environ. Pollut. 247, 874–882 (2019). https://doi.org/10.1016/j.envpol.2018.12.060

    Article  Google Scholar 

  • Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., Ryu, Y., Chen, G., Dong, W., Hu, Z., Jain, A.K., Jiang, C., Kato, E., Li, S., Lienert, S., Liu, S., Nabel, J.E.M.S., Qin, Z., Quine, T., Sitch, S., Smith, W.K., Wang, F., Wu, C., Xiao, Z., Yang, S.: Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, 1–13 (2019). https://doi.org/10.1126/sciadv.aax1396

    Article  Google Scholar 

Download references

Funding

The data used in this study is funded by the MoES.

Author information

Authors and Affiliations

Authors

Contributions

Shahana Bano carried out the data analysis and wrote the original draft of the manuscript. Vrinda Anand and Ritesh Kalbande carried out data analysis and edited and reviewed the manuscript. Gufran Beig and Devendra Singh Rathore supervised the whole study and administered the project.

Corresponding author

Correspondence to Shahana Bano.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bano, S., Anand, V., Kalbande, R. et al. Spatio-temporal variability and possible source identification of criteria pollutants from Ahmedabad-a megacity of Western India. J Atmos Chem 81, 1 (2024). https://doi.org/10.1007/s10874-023-09456-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10874-023-09456-5

Keywords

Navigation