Skip to main content
Log in

Enzyme-Like Activity of Cerium Dioxide Colloidal Solutions Stabilized with L-Malic Acid

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

For the first time, stable aqueous colloidal solutions of cerium dioxide stabilized with L-malic acid have been obtained at ligand : CeO2 molar ratios of 0.2, 0.5, 1.0, and 2.0. Using dynamic light scattering, it has been shown that CeO2 sols are characterized by a narrow monomodal size distribution of aggregates, and the sols remain to be aggregatively stable in a Tris-HCl buffer solution. According to the chemiluminescence analysis of the enzyme-like activity of cerium dioxide sols with respect to hydrogen peroxide, the surface modification of the cerium dioxide particles with malic acid increases the enzyme-like activity of СеО2 up to 4.5 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Shao, C., Shen, A., Zhang, M., et al., Oxygen vacancies enhanced CeO2:Gd nanoparticles for sensing a tumor vascular microenvironment by magnetic resonance imaging, ACS Nano, 2018, vol. 12, no. 12, pp. 12629–12637. https://doi.org/10.1021/acsnano.8b07387

    Article  CAS  PubMed  Google Scholar 

  2. Eriksson, P., Tal, A.A., Skallberg, A., et al., Cerium oxide nanoparticles with antioxidant capabilities and gadolinium integration for MRI contrast enhancement, Sci. Rep., 2018, vol. 8, no. 1, p. 6999. https://doi.org/10.1038/s41598-018-25390-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tapeinos, C., Battaglini, M., Prato, M., et al., CeO2 nanoparticles-loaded pH-responsive microparticles with antitumoral properties as therapeutic modulators for osteosarcoma, ACS Omega, 2018, vol. 3, no. 8, pp. 8952–8962. https://doi.org/10.1021/acsomega.8b01060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pi, F., Deng, X., Xue, Q., et al., Alleviating the hypoxic tumor microenvironment with MnO2-coated CeO2 nanoplatform for magnetic resonance imaging guided radiotherapy, J. Nanobiotechnol., 2023, vol. 21, no. 1, p. 90. https://doi.org/10.1186/s12951-023-01850-1

    Article  CAS  Google Scholar 

  5. Augustine, R., Hasan, A., Patan, N.K., et al., Cerium oxide nanoparticle incorporated electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) membranes for diabetic wound healing applications, ACS Biomater. Sci. Eng., 2020, vol. 6, no. 1, pp. 58–70. https://doi.org/10.1021/acsbiomaterials.8b01352

    Article  CAS  PubMed  Google Scholar 

  6. Kim, D.W., Le, T.M.D., Lee, S.M., et al., Microporous organic nanoparticles anchoring CeO2 materials: Reduced toxicity and efficient reactive oxygen species-scavenging for regenerative wound healing, ChemNanoMat, 2020, vol. 6, no. 7, pp. 1104–1110. https://doi.org/10.1002/cnma.202000067

    Article  CAS  Google Scholar 

  7. Rather, H.A., Thakore, R., Singh, R., et al., Antioxidative study of cerium oxide nanoparticle functionalised PCL-Gelatin electrospun fibers for wound healing application, Bioact. Mater., 2018, vol. 3, no. 2, pp. 201–211. https://doi.org/10.1016/j.bioactmat.2017.09.006

    Article  PubMed  Google Scholar 

  8. Zheng, H., Wang, S., Cheng, F., et al., Bioactive anti-inflammatory, antibacterial, conductive multifunctional scaffold based on MXene@CeO2 nanocomposites for infection-impaired skin multimodal therapy, Chem. Eng. J., 2021, vol. 424, p. 130148. https://doi.org/10.1016/j.cej.2021.130148

    Article  CAS  Google Scholar 

  9. Ermakov, A., Popov, A., Ermakova, O., et al., The first inorganic mitogens: Cerium oxide and cerium fluoride nanoparticles stimulate planarian regeneration via neoblastic activation, Mater. Sci. Eng.,C, 2019, vol. 104, p. 109924. https://doi.org/10.1016/j.msec.2019.109924

    Article  CAS  Google Scholar 

  10. Shcherbakov, A.B., Reukov, V.V., Yakimansky, A.V., et al., CeO2 nanoparticle-containing polymers for biomedical applications: A review, Polymers, 2021, vol. 13, no. 6, p. 924. https://doi.org/10.3390/polym13060924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ivanov, V.K., Polezhaeva, O.S., and Tret’yakov, Y.D., Nanocrystalline ceria: Synthesis, structure-sensitive properties, and promising applications, Russ. J. Gen. Chem., 2010, vol. 80, no. 3, pp. 604–617. https://doi.org/10.1134/S1070363210030412

    Article  CAS  Google Scholar 

  12. Saravanakumar, K., Sathiyaseelan, A., Mariadoss, A.V.A., et al., Antioxidant and antidiabetic properties of biocompatible ceria oxide (CeO2) nanoparticles in mouse fibroblast NIH3T3 and insulin resistant HepG2 cells, Ceram. Int., 2021, vol. 47, no. 6, pp. 8618–8626. https://doi.org/10.1016/j.ceramint.2020.11.230

    Article  CAS  Google Scholar 

  13. Naz, S., Kazmi, S.T.B., and Zia, M., CeO2 nanoparticles synthesized through green chemistry are biocompatible: In vitro and in vivo assessment, J. Biochem. Mol. Toxicol., 2019, vol. 33, no. 5, p. e22291. https://doi.org/10.1002/jbt.22291

    Article  CAS  PubMed  Google Scholar 

  14. Uzair, B., Akhtar, N., Sajjad, S., et al., Targeting microbial biofilms: By Arctium lappa l. synthesised biocompatible CeO2-NPs encapsulated in nano-chitosan, IET Nanobiotechnology, 2020, vol. 14, no. 3, pp. 217–223. https://doi.org/10.1049/iet-nbt.2019.0294

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ahamed, M., Akhtar, M.J., Khan, M.A.M., et al., Evaluation of the cytotoxicity and oxidative stress response of CeO2-RGO nanocomposites in human lung epithelial A549 cells, Nanomaterials, 2019, vol. 9, no. 12, p. 1709. https://doi.org/10.3390/nano9121709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Abbas, F., Iqbal, J., Maqbool, Q., et al., Ros mediated malignancy cure performance of morphological, optical, and electrically tuned Sn doped CeO2 nanostructures, AIP Adv., 2017, vol. 7, no. 9, p. 095205. https://doi.org/10.1063/1.4990790

    Article  CAS  Google Scholar 

  17. Ma, Y., Tian, Z., Zhai, W., et al., Insights on catalytic mechanism of CeO2 as multiple nanozymes, Nano Res., 2022, vol. 15, no. 12, pp. 10328–10342. https://doi.org/10.1007/s12274-022-4666-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xiao, G., Li, H., Zhao, Y., et al., Nanoceria-based artificial nanozymes: Review of materials and applications, ACS Appl. Nano Mater., 2022, vol. 5, no. 10, pp. 14147–14170. https://doi.org/10.1021/acsanm.2c03009

    Article  CAS  Google Scholar 

  19. Popov, A.L., Shcherbakov, A.B., Zholobak, N.M., et al., Cerium dioxide nanoparticles as third-generation enzymes (nanozymes), Nanosyst.: Phys., Chem., Math., 2017, pp. 760–781. https://doi.org/10.17586/2220-8054-2017-8-6-760-781

  20. Feng, N., Liu, Y., Dai, X., et al., Advanced applications of cerium oxide based nanozymes in cancer, RSC Adv., 2022, vol. 12, no. 3, pp. 1486–1493. https://doi.org/10.1039/D1RA05407D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sozarukova, M.M., Proskurnina, E.V., Popov, A.L., et al., New facets of nanozyme activity of ceria: Lipo- and phospholipoperoxidase-like behaviour of CeO2 nanoparticles, RSC Adv., 2021, vol. 11, no. 56, pp. 35351–35360. https://doi.org/10.1039/D1RA06730C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim, C.K., Kim, T., Choi, I.-Y., et al., Ceria nanoparticles that can protect against ischemic stroke, Angew. Chem., Int. Ed., 2012, vol. 51, no. 44, pp. 11039–11043. https://doi.org/10.1002/anie.201203780

    Article  CAS  Google Scholar 

  23. Gulicovski, J.J., Milonjić S.K., and Szécsényi, K.M., Synthesis and characterization of stable aqueous ceria sols, Mater. Manuf. Processes, 2009, vol. 24, nos. 10–11, pp. 1080–1085. https://doi.org/10.1080/10426910903032162

    Article  CAS  Google Scholar 

  24. Habib, I.Y., Kumara, N.T.R.N., Lim, C.M., et al., Dynamic light scattering and zeta potential studies of ceria nanoparticles, Solid State Phenom., 2018, vol. 278, pp. 112–120. https://doi.org/10.4028/www.scientific.net/SSP.278.112

    Article  Google Scholar 

  25. Huang, L., Zhang, W., Chen, K., et al., Facet-selective response of trigger molecule to CeO2 {1 1 0} for up-regulating oxidase-like activity, Chem. Eng. J., 2017, vol. 330, pp. 746–752. https://doi.org/10.1016/j.cej.2017.08.026

    Article  CAS  Google Scholar 

  26. Yadav, N., Patel, V., McCourt, L., et al., Tuning the enzyme-like activities of cerium oxide nanoparticles using a triethyl phosphite ligand, Biomater. Sci., 2022, vol. 10, no. 12, pp. 3245–3258. https://doi.org/10.1039/D2BM00396A

    Article  CAS  PubMed  Google Scholar 

  27. Wu, J., Wang, X., Wang, Q., et al., Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II), Chem. Soc. Rev., 2019, vol. 48, no. 4, pp. 1004–1076. https://doi.org/10.1039/C8CS00457A

    Article  CAS  PubMed  Google Scholar 

  28. Gupta, A., Das, S., Neal, C.J., et al., Controlling the surface chemistry of cerium oxide nanoparticles for biological applications, Journal of Materials Chemistry B, 2016, vol. 4, no. 19, pp. 3195–3202. https://doi.org/10.1039/C6TB00396F

    Article  CAS  PubMed  Google Scholar 

  29. Lee, S.S., Song, W., Cho, M., et al., Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating, ACS Nano, 2013, vol. 7, no. 11, pp. 9693–9703. https://doi.org/10.1021/nn4026806

    Article  CAS  PubMed  Google Scholar 

  30. Lazić, V., Živković, L.S., Sredojević, D., et al., Tuning properties of cerium dioxide nanoparticles by surface modification with catecholate-type of ligands, Langmuir, 2020, vol. 36, no. 33, pp. 9738–9746. https://doi.org/10.1021/acs.langmuir.0c01163

    Article  CAS  PubMed  Google Scholar 

  31. Wu, Q., Yang, L., Zou, L., et al., Small ceria nanoclusters with high ROS scavenging activity and favorable pharmacokinetic parameters for the amelioration of chronic kidney disease, Adv. Healthcare Mater., 2023, p. 2300632. https://doi.org/10.1002/adhm.202300632

  32. Casals, E., Zeng, M., Parra-Robert, M., et al., Cerium oxide nanoparticles: Advances in biodistribution, toxicity, and preclinical exploration, Small, 2020, vol. 16, no. 20, p. 1907322. https://doi.org/10.1002/smll.201907322

    Article  CAS  Google Scholar 

  33. Szentmihályi, K., Szilágyi, M., Balla, J., et al., In vitro antioxidant activities of magnesium compounds used in food industry, Acta Aliment., 2014, vol. 43, no. 3, pp. 419–425. https://doi.org/10.1556/AAlim.43.2014.3.8

    Article  CAS  Google Scholar 

  34. Jin, X., Yang, R., Yan, X., et al., Malic acid and oxalic acid spraying enhances phytic acid degradation and total antioxidant capacity of mung bean sprouts, Int. J. Food Sci. Technol., 2016, vol. 51, no. 2, pp. 370–380. https://doi.org/10.1111/ijfs.12941

    Article  CAS  Google Scholar 

  35. Qiu, K., He, W., Zhang, H., et al., Bio-fermented malic acid facilitates the production of high-quality chicken via enhancing muscle antioxidant capacity of broilers, Antioxidants, 2022, vol. 11, no. 12, p. 2309. https://doi.org/10.3390/antiox11122309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang, Z.W., Laurent, V., Chetouani, G., et al., New functional degradable and bio-compatible nanoparticles based on poly(malic acid) derivatives for site-specific anti-cancer drug delivery, Int. J. Pharm., 2012, vol. 423, no. 1, pp. 84–92. https://doi.org/10.1016/j.ijpharm.2011.04.035

    Article  CAS  PubMed  Google Scholar 

  37. Huang, X., Xu, L., Qian, H., et al., Polymalic acid for translational nanomedicine, J. Nanobiotechnol., 2022, vol. 20, no. 1, p. 295. https://doi.org/10.1186/s12951-022-01497-4

    Article  CAS  Google Scholar 

  38. Zhang, J., Chen, D., Liang, G., et al., Biosynthetic polymalic acid as a delivery nanoplatform for translational cancer medicine, Trends Biochem. Sci., 2021, vol. 46, no. 3, pp. 213–224. https://doi.org/10.1016/j.tibs.2020.09.008

    Article  CAS  PubMed  Google Scholar 

  39. Ljubimova, J.Y., Fujita, M., Khazenzon, N.M., et al., Nanoconjugate based on polymalic acid for tumor targeting, Chem.-Biol. Interact., 2008, vol. 171, no. 2, pp. 195–203. https://doi.org/10.1016/j.cbi.2007.01.015

    Article  CAS  PubMed  Google Scholar 

  40. Hirschey, M.D., Han, Y.-J., Stucky, G.D., et al., Imaging Escherichia coli using functionalized Core/Shell CdSe/CdS quantum dots, JBIC, J. Biol. Inorg. Chem., 2006, vol. 11, no. 5, pp. 663–669. https://doi.org/10.1007/s00775-006-0116-7

    Article  CAS  PubMed  Google Scholar 

  41. Huang, Y.-C., Wu, S.-H., Hsiao, C.-H., et al., Mild synthesis of size-tunable CeO2 octahedra for band gap variation, Chem. Mater., 2020, vol. 32, no. 6, pp. 2631–2638. https://doi.org/10.1021/acs.chemmater.0c00318

    Article  CAS  Google Scholar 

  42. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley & Sons, 2009.

    Google Scholar 

  43. Prieur, D., Bonani, W., Popa, K., et al., Size dependence of lattice parameter and electronic structure in CeO2 nanoparticles, Inorg. Chem., 2020, vol. 59, no. 8, pp. 5760–5767. https://doi.org/10.1021/acs.inorgchem.0c00506

    Article  CAS  PubMed  Google Scholar 

  44. Badertscher, M., Buhlmann, P., and Pretsch, E., Structure Determination of Organic Compounds, Berlin: Springer, 2009.

    Google Scholar 

  45. Bellami, L.J., The Infrared Spectra of Complex Molecules, New York, NY: John Wiley & Sons, 1954.

    Google Scholar 

  46. Daré, R.G., Kolanthai, E., Neal, C.J., et al., Cerium oxide nanoparticles conjugated with tannic acid prevent uvb-induced oxidative stress in fibroblasts: Evidence of a promising anti-photodamage agent, Antioxidants, 2023, vol. 12, no. 1, p. 190. https://doi.org/10.3390/antiox12010190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nastasiienko, N., Palianytsia, B., Kartel, M., et al., Thermal transformation of caffeic acid on the nanoceria surface studied by temperature programmed desorption mass-spectrometry, thermogravimetric analysis and FT-IR spectroscopy, Colloids Interfaces, 2019, vol. 3, no. 1, p. 34. https://doi.org/10.3390/colloids3010034

    Article  CAS  Google Scholar 

  48. Petrova, N., Todorovsky, D., Angelova, S., et al., Synthesis and characterization of cerium citric and tartaric complexes, J. Alloys Compd., 2008, vol. 454, nos. 1–2, pp. 491–500. https://doi.org/10.1016/j.jallcom.2007.01.005

    Article  CAS  Google Scholar 

  49. Hancock, M.L., Yokel, R.A., Beck, M.J., et al., The characterization of purified citrate-coated cerium oxide nanoparticles prepared via hydrothermal synthesis, Ap-pl. Surf. Sci., 2021, vol. 535, p. 147681. https://doi.org/10.1016/j.apsusc.2020.147681

    Article  CAS  Google Scholar 

  50. Ivanov, V.K., Polezhaeva, O.S., Shaporev, A.S., et al., Synthesis and thermal stability of nanocrystalline ceria sols stabilized by citric and polyacrylic acids, Russ. J. Inorg. Chem., 2010, vol. 55, no. 3, pp. 328–332. https://doi.org/10.1134/S0036023610030046

    Article  CAS  Google Scholar 

  51. Vlasova, N.M. and Markitan, O.V., Complexation on the oxide surfaces: Adsorption of biomolecules from aqueous solutions: A review, Theor. Exp. Chem., 2022, vol. 58, no. 1, pp. 1–14. https://doi.org/10.1007/s11237-022-09716-7

    Article  CAS  Google Scholar 

  52. Janusz, W. and Skwarek, E., Adsorption of malic acid at the hydroxyapatite/aqueous NaCl solution interface, Appl. Nanosci., 2022, vol. 12, no. 4, pp. 1355–1363. https://doi.org/10.1007/s13204-021-01938-w

    Article  CAS  Google Scholar 

  53. Shcherbakov, A.B., Teplonogova, M.A., Ivanova, O.S., et al., Facile method for fabrication of surfactant-free concentrated CeO2 sols, Mater. Res. Express, 2017, vol. 4, no. 5, p. 055008. https://doi.org/10.1088/2053-1591/aa6e9a

    Article  CAS  Google Scholar 

  54. Plakhova, T.V., Romanchuk, A.Y., Yakunin, S.N., et al., Solubility of nanocrystalline cerium dioxide: Experimental data and thermodynamic modeling, J. Phys. Chem., vol. 120, no. 39, pp. 22615–22626. https://doi.org/10.1021/acs.jpcc.6b05650

  55. Grulke, E.A., Beck, M.J., Yokel, R.A., et al., Surface-controlled dissolution rates: A case study of nanoceria in carboxylic acid solutions, Environ. Sci.: Nano, 2019, vol. 6, no. 5, pp. 1478–1492. https://doi.org/10.1039/C9EN00222G

    Article  CAS  PubMed  Google Scholar 

  56. Barany, S., Bohacs, K., Chepurna, I., et al., Electrokinetic properties and stability of cerium dioxide suspensions, RSC Adv., 2016, vol. 6, no. 73, pp. 69343–69351. https://doi.org/10.1039/C6RA12725H

    Article  CAS  Google Scholar 

  57. Robert, J.P. and Lennart, B., Surface and Colloid Chemistry in Advanced Ceramics Processing, Pugh, R.J. and Bergstrom, L., Eds., CRC Press, 2017.

    Book  Google Scholar 

  58. Vlasova, N.N., Golovkova, L.P., and Stukalina, N.G., Adsorption of organic acids on a cerium dioxide surface, Colloid J., 2015, vol. 77, no. 4, pp. 418–424. https://doi.org/10.1134/S1061933X15040201

    Article  CAS  Google Scholar 

  59. Izmailov, D.Y., Proskurnina, E.V., Shishkanov, S.A., et al., The effect of antioxidants on the formation of free radicals and primary products of the peroxidase reaction, Biophysics, 2017, vol. 62, no. 4, pp. 557–564. https://doi.org/10.1134/S0006350917040091

    Article  CAS  Google Scholar 

  60. Averchenko, E.A., Kavok, N.S., Klochkov, V.K., et al., Chemiluminescent diagnostics of free-radical processes in an abiotic system and in liver cells in the presence of nanoparticles based on rare-earth elements nReVO4:Eu3+ (Re = Gd, Y, La) and CeO2, J. Appl. Spectrosc., 2014, vol. 81, no. 5, pp. 827–833. https://doi.org/10.1007/s10812-014-0012-9

    Article  CAS  Google Scholar 

  61. Iranifam, M., Haggi, A., Akhteh, H., et al., Synthesis of rod-like CeO2 nanoparticles and their application to catalyze the luminal-O2 chemiluminescence reaction used in the determination of oxcarbazepine and ascorbic acid, Anal. Sci., 2022, vol. 38, no. 5, pp. 787–793. https://doi.org/10.1007/s44211-022-00096-5

    Article  CAS  PubMed  Google Scholar 

  62. Zhao, Y., Xu, X., Ma, Y., et al., A novel peroxidase/oxidase mimetic Fe-porphyrin covalent organic framework enhanced the luminol chemiluminescence reaction and its application in glucose sensing, Luminescence, 2020, vol. 35, no. 8, pp. 1366–1372. https://doi.org/10.1002/bio.3899

    Article  CAS  PubMed  Google Scholar 

  63. Li, D., Zhang, S., Feng, X., et al., A novel peroxidase mimetic Co-MOF enhanced luminol chemiluminescence and its application in glucose sensing, Sens. Actuators, B, 2019, vol. 296, p. 126631. https://doi.org/10.1016/j.snb.2019.126631

    Article  CAS  Google Scholar 

  64. Filippova, A.D., Sozarukova, M.M., Baranchikov, A.E., et al., Peroxidase-like activity of CeO2 nanozymes: Particle size and chemical environment matter, Molecules, 2023, vol. 28, no. 9, p. 3811. https://doi.org/10.3390/molecules28093811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sozarukova, M.M., Proskurnina, E.V., and Ivanov, V.K., Prooxidant potential of CeO2 nanoparticles towards hydrogen peroxide, Nanosyst.: Phys., Chem., Math., 2021, vol. 12, no. 3, pp. 283–290. https://doi.org/10.17586/2220-8054-2021-12-3-283-290

    Article  CAS  Google Scholar 

  66. Moreno-Castilla, C., Naranjo, Á., Victoria López-Ramón, M., et al., Influence of the hydrodynamic size and ζ-potential of manganese ferrite nanozymes as peroxidase-mimicking catalysts at pH 4 in different buffers, J. Catal., 2022, vol. 414, pp. 179–185. https://doi.org/10.1016/j.jcat.2022.09.010

    Article  CAS  Google Scholar 

  67. Zhou, X., Zeng, W., Rong, S., et al. Alendronate-modified nanoceria with multiantioxidant enzyme-mimetic activity for reactive oxygen species/reactive nitrogen species scavenging from cigarette smoke, ACS Appl. Mater. Interfaces, 2021, vol. 13, no. 40, pp. 47394–47406. https://doi.org/10.1021/acsami.1c15358

  68. Wu, H., Sun, Q., Chen, J., et al., Citric acid-assisted ultrasmall CeO2 nanoparticles for efficient photocatalytic degradation of glyphosate, Chem. Eng. J., 2021, vol. 425, p. 130640. https://doi.org/10.1016/j.cej.2021.130640

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was performed using the equipment of the JRC PMR IGIC RAS.

Funding

The work was supported by the Russian Science Foundation (project no. 19-13-00416).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Baranchikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Khozina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippova, A.D., Baranchikov, A.E. & Ivanov, V.K. Enzyme-Like Activity of Cerium Dioxide Colloidal Solutions Stabilized with L-Malic Acid. Colloid J 85, 782–794 (2023). https://doi.org/10.1134/S1061933X23600653

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X23600653

Keywords:

Navigation