Skip to main content
Log in

Nanoparticle Concentration as an Important Parameter for Characterization of Dispersion and Its Applications in Biomedicine

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Currently, there are problems to standardize methods for determining the concentration of nanoparticles and creation of etalon materials for calibrating measured concentrations. Accurate determination of nanoparticle concentration is necessary to assess the maximum dose of administered nanotherapeutics for diagnostics and therapy in vivo, to determine the order of reaction in enzymatic nanoreactors. In addition, this parameter determines biological effects, such as the formation of a protein corona on the outer surface of nanoparticles that precedes nanoparticles’ absorption and internalization in cells. This review discusses the most common methods for determining the concentration of nanoparticles based on direct visualization, using microscopy, light absorption or light scattering, direct counting of nanoparticles, and gravimetry. Results may differ from one method to the other. Thus, the use of a combination of several methods provides more reliable results. The advantages, disadvantages and ways to improve accuracy of results are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Clement, S., Gardner, B., Razali, W.A.W., et al., Quantification of nanoparticle concentration in colloidal suspensions by a non-destructive optical method, Nanotecnology, 2017, vol. 28, no. 47, p. 475702. https://doi.org//10.1088/1361-6528/aa8d89

  2. Ouyang, B., Poon, W., Zhang, Y.-N., et al., The dose threshold for nanoparticle tumour delivery, Nat. Mater., 2020, vol. 19, no. 12, pp. 1362–1371. https://doi.org//s41563-020-0755-z

    Article  CAS  PubMed  Google Scholar 

  3. Pashirova, T., Shaihutdinova, Z., Mansurova, M., et al., Enzyme nanoreactor for in vivo detoxification of organophosphates, ACS Appl. Mater. Interfaces, 2022, vol. 14, no. 17, pp. 19241–19252. https://doi.org/10.1021/acsami.2c03210

    Article  CAS  PubMed  Google Scholar 

  4. Shajhutdinova, Z., Pashirova, T., and Masson, P., Kinetic processes in enzymatic nanoreactors for in vivo detoxification, Biomedicines, 2022, vol. 10, no. 4, p. 784. https://doi.org/10.3390/biomedicines10040784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pashirova, T.N., Shaihutdinova, Z.M., Mironov, V.F., and Masson, P., Biomedical nanosystems for in vivo detoxification: From passive delivery systems to functional nanodevices and nanorobots, Acta Naturae, 2023, vol. 15, no. 1, pp. 4–12. https://doi.org//2 10.32607/actanaturae.15681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Qian, X., Nymann Westensee, I., Brodszkij, E., and Städler, B., Cell mimicry as a bottom-up strategy for hierarchical engineering of nature-inspired entities, Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 2020, vol. 13, no. 3, p. e1683. https://doi.org/10.1002/wnan.1683

    Article  CAS  PubMed  Google Scholar 

  7. Driscoll, D.F. and Nicoli, D.F., Analytical methods for determining the size (distribution) in parenteral dispersions, Non-Biological Complex Drugs. The Science and the Regulatory Landscape, 2015, vol. 20, pp. 193–259. https://doi.org/10.1007/978-3-319-16241-6_7

    Article  Google Scholar 

  8. Soema, P.C., Willems, G.-J., Jiskoot, W., Amorij, J.-P., and Kersten, G.F., Predicting the influence of liposomal lipid composition on liposome size, zeta potential and liposome-induced dendritic cell maturation using a design of experiments approach, Eur. J. Pharm. Biopharm., 2015, vol. 94, pp. 427–435. https://doi.org/10.1016/j.ejpb.2015.06.026

    Article  CAS  PubMed  Google Scholar 

  9. Mozafari, M.R., Mazaheri, E., and Dormiani, K., Simple equations pertaining to the particle number and surface area of metallic, polymeric, lipidic and vesicular nanocarriers, Sci. Pharm., 2021, vol. 89, no. 2, p. 15. https://doi.org/10.3390/scipharm89020015

    Article  CAS  Google Scholar 

  10. Pidgeon, C. and Hunt, C.A., Calculating number and surface area of liposomes in any suspension, J. Pharm. Sci., 1981, vol. 70, no. 2, pp. 173–176. https://doi.org/10.1002/jps.2600700215

    Article  CAS  PubMed  Google Scholar 

  11. Epstein, H., Afergan, E., Moise, T., et al., Number-concentration of nanoparticles in liposomal and polymeric multiparticulate preparations: Empirical and calculation methods, Biomaterials, 2006, vol. 27, no. 4, pp. 651–659. https://doi.org/10.1016/j.biomaterials.2005.06.006

    Article  CAS  PubMed  Google Scholar 

  12. Vogel, R., Savage, J., Muzard, J., et al., Measuring particle concentration of multimodal synthetic reference materials and extracellular vesicles with orthogonal techniques: Who is up to the challenge?, J. Extracell. Vesicles, 2021, vol. 10, no. 3, p. e12052. https://doi.org/10.1002/jev2.12052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mourdikoudis, S., Pallares, R.M., and Thanh, N.T.K., Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties, Nanoscale, 2018, vol. 10, no. 27, pp. 12871–12934. https://doi.org/10.1039/C8NR02278J

    Article  CAS  PubMed  Google Scholar 

  14. Minelli, C., Bartczak, D., Peters, R., et al., Sticky measurement problem: Number concentration of agglomerated nanoparticles, Langmuir, 2019, vol. 35, no. 14, pp. 4927–4935. https://doi.org/10.1021/acs.langmuir.8b04209

    Article  CAS  PubMed  Google Scholar 

  15. Shard, A.G., Wright, L., and Minelli, C., Robust and accurate measurements of gold nanoparticle concentrations using UV-visible spectrophotometry, Biointerphases, 2018, vol. 13, no. 6, p. 061002. https://doi.org/10.1116/1.5054780

    Article  CAS  PubMed  Google Scholar 

  16. Chithrani, B.D., Ghazani, A.A., and Chan, W.C.W., Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells, Nano Lett., 2006, vol. 6, no. 4, pp. 662–668. https://doi.org/10.1021/nl052396o

    Article  CAS  PubMed  Google Scholar 

  17. Cho, E.C., Xie, J., Wurm, P.A., and Xia, Y., Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant, Nano Lett., 2009, vol. 9, no. 3, pp. 1080–1084. https://doi.org/10.1021/nl803487r

    Article  CAS  PubMed  Google Scholar 

  18. Yan, H., Cacioppo, M., Megahed, S., et al., Influence of the chirality of carbon nanodots on their interaction with proteins and cells, Nat. Commun., 2021, vol. 12, no. 1, p. 7208. https://doi.org/10.1038/s41467-021-27406-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shang, J. and Gao, X., Nanoparticle counting: Towards accurate determination of the molar concentration, Chem. Soc. Rev., 2014, vol. 43, no. 21, pp. 7267–7278. https://doi.org/10.1039/C4CS00128A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Khlebtsov, B.N., Khanadeev, V.A., and Khlebtsov, N.G., Determination of the size, concentration, and refractive index of silica nanoparticles from turbidity spectra, Langmuir, 2008, vol. 24, no. 16, pp. 8964–8970. https://doi.org/10.1021/la8010053

    Article  CAS  PubMed  Google Scholar 

  21. Baalousha, M., Prasad, A., and Lead, J.R., Quantitative measurement of the nanoparticle size and number concentration from liquid suspensions by atomic force microscopy, Environ. Sci. Process. Impacts, 2014, vol. 16, no. 6, pp. 1338–1347. https://doi.org/10.1039/C3EM00712J

    Article  CAS  PubMed  Google Scholar 

  22. Haiss, W., Thanh, N.T.K., Aveyard, J., and Fernig, D.G., Determination of size and concentration of gold nanoparticles from UV−Vis spectra, Anal. Chem., 2007, vol. 79, no. 11, pp. 4215–4221. https://doi.org/10.1021/ac0702084

    Article  CAS  PubMed  Google Scholar 

  23. Khlebtsov, N.G., Determination of size and concentration of gold nanoparticles from extinction spectra, Anal. Chem., 2008, vol. 80, no. 17, pp. 6620–6625. https://doi.org/10.1021/ac800834n

    Article  CAS  PubMed  Google Scholar 

  24. Paramelle, D., Sadovoy, A., Gorelik, S., et al., A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra, Analyst, 2014, vol. 139, no. 19, p. 4855. https://doi.org/10.1039/C4AN00978A

    Article  CAS  PubMed  Google Scholar 

  25. Khlebtsov, B.N., Khanadeev, V.A., and Khlebtsov, N.G., Spectroturbidimetric determination of the size, concentration, and refractive index of silica nanoparticles, Opt. Spectrosc., 2008, vol. 105, no. 5, pp. 732–738. https://doi.org/10.1134/S0030400X08110143

    Article  CAS  Google Scholar 

  26. Vysotskii, V.V., Uryupina, O.Y., Gusel’nikova, A.V., and Roldugin, V.I., On the feasibility of determining nanoparticle concentration by the dynamic light scattering method, Colloid J., 2009, vol. 71, no. 6, pp. 739–744. https://doi.org/10.1134/S1061933X09060027

    Article  CAS  Google Scholar 

  27. Levin, A.D. and Sadagov, A.Yu., RF Patent 2610942 C, MPK G01N 21/00.№ 2015151702, A method for optical measurement of the number concentration of dispersed particles in liquid media and a device for its implementation, 2017.

  28. Bohren F.C. and Huffman D.R., Absorption and Scattering of Light by Small Particles, New York: John Wiley & Sons, 1983.

    Google Scholar 

  29. Li, F., Schafer, R., Hwang, C.-T., Tanner, C.E., and Ruggiero, S.T., High-precision sizing of nanoparticles by laser transmission spectroscopy, Appl. Opt., 2010, vol. 49, no. 34, p. 6602. https://doi.org/10.1364/AO.49.006602

    Article  PubMed  Google Scholar 

  30. Li, F., Mahon, A.R., Barnes, M.A., et al., Quantitative and rapid DNA detection by laser transmission spectroscopy, PLoS One, 2011, vol. 6, no. 12, p. e29224. https://doi.org/10.1371/journal.pone.0029224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sennato, S., Sarra, A., La Capria, C.P., et al., Quantification of particle number concentration in liposomal suspensions by Laser Transmission Spectroscopy (LTS), Colloid. Surf. B, 2023, vol. 222, p. 113137. https://doi.org/10.1016/j.colsurfb.2023.113137

    Article  CAS  Google Scholar 

  32. Sun, N., Johnson, J., Stack, M.S., et al., Nanoparticle analysis of cancer cells by light transmission spectroscopy, Anal. Biochem., 2015, vol. 484, pp. 58–65. https://doi.org/10.1016/j.ab.2015.05.004

    Article  CAS  PubMed  Google Scholar 

  33. Sarra, A., Stanchieri, G.D.P., De Marcellis, A., et al., Laser transmission spectroscopy based on tunable-gain dual-channel dual-phase lia for biological nanoparticles characterization, IEEE Transactions on Biomedical Circuits and Systems, 2021, vol. 15, no. 1, pp. 177–187. https://doi.org/10.1109/TBCAS.2021.3060569

    Article  PubMed  Google Scholar 

  34. Filipe, V., Hawe, A., and Jiskoot, W., Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates, Pharm. Res., 2010, vol. 27, no. 5, pp. 796–810. https://doi.org/10.1007/s11095-010-0073-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Griffiths, D., Carnell-Morris, P., and Wright, M., Nanoparticle tracking analysis for multiparameter characterization and counting of nanoparticle suspensions, Methods Mol. Biol., 2020, pp. 289–303. https://doi.org/10.1007/978-1-0716-0319-2_22

  36. Gallego-Urrea, J.A., Tuoriniemi, J., and Hassellov, M., Applications of particle-tracking analysis to the determination of size distributions and concentrations of nanoparticles in environmental, biological and food samples, TrAC Trends Anal. Chem., 2011, vol. 30, no. 3, pp. 473–483. https://doi.org/10.1016/j.trac.2011.01.005

    Article  CAS  Google Scholar 

  37. Tian, X., Nejadnik, M.R., Baunsgaard, D., et al., Comprehensive evaluation of nanoparticle tracking analysis (NanoSight) for characterization of proteinaceous submicron particles, J. Pharm. Sci., 2016, vol. 105, no. 11, pp. 3366–3375. https://doi.org/10.1016/j.xphs.2016.08.009

    Article  CAS  PubMed  Google Scholar 

  38. Sediq, A.S., van Duijvenvoorde, R.B., Jiskoot, W., and Nejadnik, M.R., No touching! Abrasion of adsorbed protein is the root cause of subvisible particle formation during stirring, J. Pharm. Sci., 2016, vol. 105, no. 2, pp. 519–529. https://doi.org/10.1016/j.xphs.2015.10.003

    Article  CAS  PubMed  Google Scholar 

  39. Bickel, F., Herold, E.M., Signes, A., et al., Reversible NaCl-induced aggregation of a monoclonal antibody at low pH: Characterization of aggregates and factors affecting aggregation, Eur. J. Pharm. Biopharm., 2016, vol. 107, pp. 310–320. https://doi.org/10.1016/j.ejpb.2016.07.020

    Article  CAS  PubMed  Google Scholar 

  40. Chen, C., Zhu, S., Huang, T., Wang, S., and Yan, X., Analytical techniques for single-liposome characterization, Anal. Methods, 2013, vol. 5, no. 9, p. 2150. https://doi.org/10.1039/c3ay40219c

    Article  CAS  Google Scholar 

  41. Barcelos, J.M., Hayasaki, T.G., de Santana, R.C., et al., Photothermal properties of IR-780-based nanoparticles depend on nanocarrier design: A comparative study on synthetic liposomes and cell membrane and hybrid biomimetic vesicles, Pharmaceutics, 2023, vol. 15, no. 2, p. 444. https://doi.org/10.3390/pharmaceutics15020444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gross, J., Sayle, S., Karow, A.R., Bakowsky, U., and Garidel, P., Nanoparticle tracking analysis of particle size and concentration detection in suspensions of polymer and protein samples: Influence of experimental and data evaluation parameters, Eur. J. Pharm. Biopharm., 2016, vol. 104, pp. 30–41. https://doi.org/10.1016/j.ejpb.2016.04.013

    Article  CAS  PubMed  Google Scholar 

  43. Anderson, W., Kozak, D., Coleman, V.A., Jamting, A.K., and Trau, M., A comparative study of submicron particle sizing platforms: Accuracy, precision and resolution analysis of polydisperse particle size distributions, J. Colloid Interface Sci., 2013, vol. 405, pp. 322–330. https://doi.org/10.1016/j.jcis.2013.02.030

    Article  CAS  PubMed  Google Scholar 

  44. Malloy, A. and Carr, B., Nanoparticle tracking analysis —The HaloTM System, Part. Part. Syst. Charact., 2006, vol. 23, no. 2, pp. 197–204. https://doi.org/10.1002/ppsc.200601031

    Article  Google Scholar 

  45. Takechi-Haraya, Y., Usui, A., Izutsu, K., and Abe, Y., Atomic force microscopic imaging of mRNA-lipid nanoparticles in aqueous medium, J. Pharm. Sci., 2023, vol. 112, no. 3, pp. 648–652. https://doi.org/10.1016/j.xphs.2022.11.026

    Article  CAS  PubMed  Google Scholar 

  46. Usfoor, Z., Kaufmann, K., Rakib, A.S.H., Hergenroder, R., and Shpacovitch, V., Features of sizing and enumeration of silica and polystyrene nanoparticles by nanoparticle tracking analysis (NTA), Sensors, 2020, vol. 20, no. 22, p. 6611. https://doi.org/10.3390/s20226611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bachurski, D., Schuldner, M., Nguyen, P.-H., et al., Extracellular vesicle measurements with nanoparticle tracking analysis—An accuracy and repeatability comparison between NanoSight NS300 and ZetaView, J. Extracell. Vesicles, 2019, vol. 8, no. 1, p. 1596016. https://doi.org/10.1080/20013078.2019.1596016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hoover, B.M. and Murphy, R.M., Evaluation of nanoparticle tracking analysis for the detection of rod-shaped particles and protein aggregates, J. Pharm. Sci., 2020, vol. 109, no. 1, pp. 452–463. https://doi.org/10.1016/j.xphs.2019.10.006

    Article  CAS  PubMed  Google Scholar 

  49. Reipa, V., Purdum, G., and Choi, J., Measurement of nanoparticle concentration using quartz crystal microgravimetry, J. Phys. Chem. B., 2010, vol. 114, no. 49, pp. 16112–16117. https://doi.org/10.1021/jp103861m

    Article  CAS  PubMed  Google Scholar 

  50. Wen, C.-Y., Tang, M., Hu, J., et al., Determination of the absolute number concentration of nanoparticles and the active affinity sites on their surfaces, Anal. Chem., 2016, vol. 88, no. 20, pp. 10134–10142. https://doi.org/10.1021/acs.analchem.6b02613

    Article  CAS  PubMed  Google Scholar 

  51. Maas, S.L.N., De Vrij, J., and Broekman, M.L.D., Quantification and size-profiling of extracellular vesicles using tunable resistive pulse sensing, J. Visualized Exp., 2014, no. 92, p. e51623. https://doi.org/10.3791/51623

  52. Shard, A.G., Sparnacci, K., Sikora, A., et al., Measuring the relative concentration of particle populations using differential centrifugal sedimentation, Anal. Methods, 2018, vol. 10, no. 22, pp. 2647–2657. https://doi.org/10.1039/C8AY00491A

    Article  CAS  Google Scholar 

  53. Vaclavek, T., Prikryl, J., and Foret, F., Resistive pulse sensing as particle counting and sizing method in microfluidic systems: Designs and applications review, J. Sep. Sci., 2019, vol. 42, no. 1, pp. 445–457. https://doi.org/10.1002/jssc.201800978

    Article  CAS  PubMed  Google Scholar 

  54. Austin, J., Minelli, C., Hamilton, D., Wywijas, M., and Jones, H.J., Nanoparticle number concentration measurements by multi-angle dynamic light scattering, J. Nanoparticle Res., 2020, vol. 22, no. 5, p. 108. https://doi.org/10.1007/s11051-020-04840-8

    Article  CAS  Google Scholar 

  55. Marques, S.S., Ramos, I.I., Silva, C., et al., Lab-on-Valve automated and miniaturized assessment of nanoparticle concentration based on light-scattering, Anal. Chem., 2023, vol. 95, no. 10, pp. 4619–4626. https://doi.org/10.1021/acs.analchem.2c04631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pauw, B.R., Kastner, C., and Thunemann, A.F., Nanoparticle size distribution quantification: Results of a small-angle X-ray scattering inter-laboratory comparison, J. Appl. Crystallogr., 2017, vol. 50, no. 5, pp. 1280–1288. https://doi.org/10.1107/S160057671701010X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hlaváček, A., Křivánková, J., Brožková, H., et al., Absolute counting method with multiplexing capability for estimating the number concentration of nanoparticles using anisotropically collapsed gels, Anal. Chem., 2022, vol. 94, no. 41, pp. 14340–14348. https://doi.org/10.1021/acs.analchem.2c02989

    Article  CAS  PubMed  Google Scholar 

  58. Li, M., Guha, S., Zangmeister, R., Tarlov, M.J., and Zachariah, M.R., Method for determining the absolute number concentration of nanoparticles from electrospray sources, Langmuir, 2011, vol. 27, no. 24, pp. 14732–14739. https://doi.org/10.1021/la202177s

    Article  CAS  PubMed  Google Scholar 

  59. Urey, C., Weiss, V.U., Gondikas, A., et al., Combining gas-phase electrophoretic mobility molecular analysis (GEMMA), light scattering, field flow fractionation and cryo electron microscopy in a multidimensional approach to characterize liposomal carrier vesicles, Int. J. Pharm., 2016, vol. 513, nos. 1–2, pp. 309–318. https://doi.org/10.1016/j.ijpharm.2016.09.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tuoriniemi, J., Moreira, B., and Safina, G., Determining number concentrations and diameters of polystyrene particles by measuring the effective refractive index of colloids using surface plasmon resonance, Langmuir, 2016, vol. 32, no. 41, pp. 10632–10640. https://doi.org/10.1021/acs.langmuir.6b02684

    Article  CAS  PubMed  Google Scholar 

  61. Cuello-Nuñez, S., Abad-Álvaro, I., Bartczak, D., et al., The accurate determination of number concentration of inorganic nanoparticles using spICP-MS with the dynamic mass flow approach, J. Anal. At. Spectrom., 2020, vol. 35, no. 9, pp. 1832–1839. https://doi.org/10.1039/c9ja00415g

    Article  CAS  Google Scholar 

  62. Weiss, V.U., Wieland, K., Schwaighofer, A., Lendl, B., and Allmaier, G., Native nano-electrospray differential mobility analyzer (nES Gemma) enables size selection of liposomal nanocarriers combined with subsequent direct spectroscopic analysis, Anal. Chem., 2019, vol. 91, no. 6, pp. 3860–3868. https://doi.org/10.1021/acs.analchem.8b04252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Levin, A.D., Nagaev, A.I., Rukin, E.M., Sadagov, Y.M., and Aseychev, A.V., Problems of procedure support of biomedical nanotechnologies, Meas. Tech., 2010, vol. 53, no. 8, pp. 869–877. https://doi.org/10.1007/s11018-010-9590-y

    Article  CAS  Google Scholar 

  64. Du, S., Kendall, K., Morris, S., and Sweet, C., Measuring number-concentrations of nanoparticles and viruses in liquids on-line, J. Chem. Technol. Biotechnol., 2010, vol. 85, no. 9, pp. 1223–1228. https://doi.org/10.1002/jctb.2421

    Article  CAS  Google Scholar 

  65. Yahata, S., Hirose, M., Ueno, T., Nagumo, H., and Sakai-Kato, K., Effect of sample concentration on nanoparticle tracking analysis of small extracellular vesicles and liposomes mimicking the physicochemical properties of exosomes, Chem. Pharm. Bull., 2021, vol. 69, no. 11, pp. 1045−1053. https://doi.org/10.1248/cpb.c21-00452

  66. De Jong, W.H., Hagens, W.I., Krystek, P., et al., Particle size-dependent organ distribution of gold nanoparticles after intravenous administration, Biomaterials, 2008, vol. 29, no. 12, pp. 1912–1919. https://doi.org/10.1016/j.biomaterials.2007.12.037

    Article  CAS  PubMed  Google Scholar 

  67. Reshetov, V., Zorin, V., Siupa, A., et al., Interaction of liposomal formulations of meta-tetra(hydroxyphenyl)chlorin (Temoporfin) with serum proteins: Protein binding and liposome destruction, Photochem. Photobiol., 2012, vol. 88, no. 5, pp. 1256–1264. https://doi.org/10.1111/j.1751-1097.2012.01176.x

    Article  CAS  PubMed  Google Scholar 

  68. Wilson, D.R. and Green, J.J., Nanoparticle tracking analysis for determination of hydrodynamic diameter, concentration, and zeta-potential of polyplex nanoparticles, Methods Mol. Biol., 2017, pp. 31–46. https://doi.org/10.1007/978-1-4939-6840-4_3

  69. Wilson, D.R., Mosenia, A., Suprenant, M.P., et al., Continuous microfluidic assembly of biodegradable poly(beta-amino ester)/DNA nanoparticles for enhanced gene delivery, J. Biomed. Mater. Res., 2017, vol. 105, no. 6, pp. 1813–1825. https://doi.org/10.1002/jbm.a.36033

    Article  CAS  Google Scholar 

  70. Uzhytchak, M., Smolkova, B., Lunova, M., et al., Lysosomal nanotoxicity: Impact of nanomedicines on lysosomal function, Adv. Drug Delivery Rev., 2023, vol. 197, p. 114828. https://doi.org/10.1016/j.addr.2023.114828

    Article  CAS  Google Scholar 

  71. Kato, H., Tracking nanoparticles inside cells, Nat. Nanotechnol., 2011, vol. 6, no. 3, pp. 139–140. https://doi.org/10.1038/nnano.2011.25

    Article  CAS  PubMed  Google Scholar 

  72. Rennick, J.J., Johnston, A.P.R., and Parton, R.G., Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics, Nat. Nanotechnol., 2021, vol. 16, no. 3, pp. 266–276. https://doi.org/10.1038/s41565-021-00858-8

    Article  CAS  PubMed  Google Scholar 

  73. Åberg, C., Kinetics of nanoparticle uptake into and distribution in human cells, Nanoscale Adv., 2021, vol. 3, no. 8, pp. 2196–2212. https://doi.org/10.1039/D0NA00716A

    Article  PubMed  PubMed Central  Google Scholar 

  74. Salvati, A. and Poelstra, K., Drug targeting and nanomedicine: Lessons learned from liver targeting and opportunities for drug innovation, Pharmaceutics, 2022, vol. 14, no. 1, p. 217. https://doi.org/10.3390/pharmaceutics14010217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vtyurina, N., Åberg, C., and Salvati, A., Imaging of nanoparticle uptake and kinetics of intracellular trafficking in individual cells, Nanoscale, 2021, vol. 13, no. 23, pp. 10436–10446. https://doi.org/10.1039/D1NR00901J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Åberg, C., Piattelli, V., Montizaan, D., and Salvati, A., Sources of variability in nanoparticle uptake by cells, Nanoscale, 2021, vol. 13, no. 41, pp. 17530–17546. https://doi.org/10.1039/D1NR04690J

    Article  PubMed  PubMed Central  Google Scholar 

  77. Aizik, G., Waiskopf, N., Agbaria, M., et al., Delivery of liposomal quantum dots via monocytes for imaging of inflamed tissue, ACS Nano, 2017, vol. 11, no. 3, pp. 3038–3051. https://doi.org/10.1021/acsnano.7b00016

    Article  CAS  PubMed  Google Scholar 

  78. Labouta, H.I., Sarsons, C., Kennard, J., et al., Understanding and improving assays for cytotoxicity of nanoparticles: What really matters?, RSC Adv., 2018, vol. 8, no. 41, pp. 23027–23039. https://doi.org/10.1039/C8RA03849J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fan, Y., Marioli, M., and Zhang, K., Analytical characterization of liposomes and other lipid nanoparticles for drug delivery, J. Pharm. Biomed. Anal., 2021, vol. 192, p. 113642. https://doi.org/10.1016/j.jpba.2020.113642

    Article  CAS  PubMed  Google Scholar 

  80. Ma, B. and Bianco, A., Regulation of biological processes by intrinsically chiral engineered materials, Nat. Rev. Mater., 2023, vol. 8, no. 6, pp. 403–413. https://doi.org/10.1038/s41578-023-00561-1

    Article  CAS  Google Scholar 

  81. Salvati, A., Åberg, C., Santos, T., et al., Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules: Toward models of uptake kinetics, Nanomedicine, 2011, vol. 7, no. 6, pp. 818–826. https://doi.org/10.1016/j.nano.2011.03.005

    Article  CAS  PubMed  Google Scholar 

  82. Shi, H., He, X., Yuan, Y., Wang, K., and Liu, D., Nanoparticle-based biocompatible and long-life marker for lysosome labeling and tracking, Anal. Chem., 2010, vol. 82, no. 6, pp. 2213–2220. https://doi.org/10.1021/ac902417s

    Article  CAS  PubMed  Google Scholar 

  83. Chen, Y.-C., Chen, K.-F., Lin, K.-Y.A., et al., Evaluation of the pulmonary toxicity of PSNPs using a Transwell-based normal human bronchial epithelial cell culture system, Sci. Total Environ., 2023, vol. 895, p. 165213. https://doi.org/S0048969723038366

    Article  CAS  PubMed  Google Scholar 

  84. Yang, K., Tran, K., and Salvati, A., Tuning liposome stability in biological environments and intracellular drug release kinetics, Biomolecules, 2022, vol. 13, no. 1, p. 59. https://doi.org/10.3390/biom13010059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Faria, M., Noi, K.F., Dai, Q., et al., Revisiting cell-particle association in vitro: A quantitative method to compare particle performance, J. Controlled Release, 2019, vol. 307, pp. 355–367. https://doi.org/10.1016/j.jconrel.2019.06.027

    Article  CAS  Google Scholar 

  86. Simonsen, J.B. and Kromann, E.B., Pitfalls and opportunities in quantitative fluorescence-based nanomedicine studies—A commentary, J. Controlled Release, 2021, vol. 335, pp. 660–667. https://doi.org/10.1016/j.jconrel.2021.05.041

    Article  CAS  Google Scholar 

  87. Gottstein, C., Wu, G., Wong, B.J., and Zasadzin-ski, J.A., Precise quantification of nanoparticle internalization, ACS Nano, 2013, vol. 7, no. 6, pp. 4933–4945. https://doi.org/10.1021/nn400243d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Vischio, F., Fanizza, E., De Bellis, V., et al., Near-infrared absorbing solid lipid nanoparticles encapsulating plasmonic copper sulfide nanocrystals, J. Phys. Chem. C, 2019, vol. 123, no. 37, pp. 23205–23213. https://doi.org/10.1021/acs.jpcc.9b05897

    Article  CAS  Google Scholar 

  89. Salavatov, N.A., Bol’shakova, A.V., Morozov, V.N., et al., Gold nanorods with functionalized organosilica shells: Synthesis and prospects of application in tumor theranostics, Colloid J., 2022, vol. 84, no. 1, pp. 93–99. https://doi.org/10.1134/S1061933X22010100

    Article  CAS  Google Scholar 

  90. Chauhan, K., Zárate-Romero, A., Sengar, P., Medrano, C., and Vazquez-Duhalt, R., Catalytic kinetics considerations and molecular tools for the design of multienzymatic cascade nanoreactors, ChemCatChem, 2021, vol. 13, no. 17, pp. 3732–3748. https://doi.org/10.1002/cctc.202100604

    Article  CAS  Google Scholar 

Download references

Funding

T.N. Pashirova., Z.M. Shaihutdinova, V.F. Mironov acknowledge the financial support received from the government assignment for FRC Kazan Scientific Center of Russian Academy of Sciences. The work of P. Masson (Nanodevices for detoxification) is carried out in accordance with the Strategic Academic Leadership Program “Priority 2030” of the Kazan Federal University of the Government of the Russian Federation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Pashirova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pashirova, T.N., Shaihutdinova, Z.M., Souto, E.B. et al. Nanoparticle Concentration as an Important Parameter for Characterization of Dispersion and Its Applications in Biomedicine. Colloid J 85, 770–781 (2023). https://doi.org/10.1134/S1061933X23600720

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X23600720

Keywords:

Navigation