Skip to main content
Log in

Assessment of the Severity of Aortic Regurgitation by Noninvasive Imaging

Non-invasive MMI for AR

  • Echocardiography (JM Gardin and AH Waller, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

The role of multimodality imaging in the evaluation of patients with aortic regurgitation is summarized in this review.

Recent Findings

The etiology (mechanism) of the aortic regurgitation and the severity of aortic regurgitation and hemodynamic consequences are key in the decision making of patients with severe aortic regurgitation. While echocardiography remains as the leading technique to assess all these parameters, other imaging techniques have become essential for the accurate assessment of aortic regurgitation severity and the timing of aortic intervention. The anatomic suitability of transcatheter aortic valve implantation in inoperable patients with severe aortic regurgitation is usually assessed with computed tomography.

Summary

Aortic regurgitation is a prevalent disease with various pathophysiological mechanisms that need a personalized treatment. The evaluation of the mechanism and severity of aortic regurgitation can be initially performed with echocardiography. Three-dimensional techniques, including echocardiography, have become very relevant for accurate assessment of the regurgitation severity and its hemodynamic consequences. Assessment of myocardial tissue characteristics with cardiac magnetic resonance is key in the risk stratification of patients and in the timing of aortic intervention. Computed tomography is important in the assessment of aortic dimensions and selection of patients for transcatheter aortic valve implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AR:

Aortic regurgitation

CMR:

Cardiac magnetic resonance

CT:

Computed tomography

ECG:

Electrocardiographic

ECV:

Myocardial extracellular volume

EF:

Ejection fraction

LGE:

Late gadolinium enhancement

LV:

Left ventricle

LVEF:

Left ventricular ejection fraction

LVOT:

Left ventricular outflow tract

MRI:

Magnetic resonance imaging

TAVI:

Transcatheter aortic valve implantation

TEE:

Transesophageal echocardiography

TTE:

Transthoracic echocardiography

2D:

Two-dimensional

3D:

Three-dimensional

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. Lancet. 2006;368(9540):1005–11. https://doi.org/10.1016/S0140-6736(06)69208-8.

    Article  PubMed  Google Scholar 

  2. Iung B, Delgado V, Rosenhek R, et al. Contemporary presentation and management of valvular heart disease: the EURObservational Research Programme Valvular Heart Disease II Survey. Circulation. 2019;140(14):1156–69. https://doi.org/10.1161/CIRCULATIONAHA.119.041080.

    Article  PubMed  Google Scholar 

  3. Ranard LS, Bonow RO, Nishimura R, et al. Imaging methods for evaluation of chronic aortic regurgitation in adults. J Am Coll Cardiol. 2023;82(20):1953–66. https://doi.org/10.1016/j.jacc.2023.08.051.

    Article  PubMed  Google Scholar 

  4. •• Vahanian A, Beyersdorf F, Praz F, et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2022;43(7):561–632. https://doi.org/10.1093/eurheartj/ehab395. The European Society of Cardiology practice guidelines on valvular heart disease provide the most up to date evidence on the diagnosis and management of patients with aortic regurgitation.

    Article  PubMed  Google Scholar 

  5. •• Lancellotti P, Pibarot P, Chambers J, et al. Multi-modality imaging assessment of native valvular regurgitation: an EACVI and ESC council of valvular heart disease position paper. Eur Hear J - Cardiovasc Imaging. 2022;23(5):e171–232. https://doi.org/10.1093/ehjci/jeab253. Consensus document on the use of multimodality imaging for the diagnosis of patients with native valular regurgitation, including aortic regurgitation.

    Article  Google Scholar 

  6. Perez de Isla L, Zamorano J, Fernandez-Golfin C, et al. 3D color-Doppler echocardiography and chronic aortic regurgitation: A novel approach for severity assessment. Int J Cardiol. 2013;166(3):640–645. https://doi.org/10.1016/j.ijcard.2011.11.094.

  7. Muraru D, Badano LP, Vannan M, Iliceto S. Assessment of aortic valve complex by three-dimensional echocardiography: a framework for its effective application in clinical practice. Eur Hear journal Cardiovasc Imaging. 2012;13(7):541–55. https://doi.org/10.1093/ehjci/jes075.

    Article  Google Scholar 

  8. Schaefer BM, Lewin MB, Stout KK, et al. The bicuspid aortic valve: an integrated phenotypic classification of leaflet morphology and aortic root shape. Heart. 2008;94(12):1634–8. https://doi.org/10.1136/hrt.2007.132092.

    Article  CAS  PubMed  Google Scholar 

  9. Borger MA, Fedak PWM, Stephens EH, et al. The American Association for Thoracic Surgery consensus guidelines on bicuspid aortic valve–related aortopathy: Full online-only version. J Thorac Cardiovasc Surg. 2018;156(2):e41–74. https://doi.org/10.1016/j.jtcvs.2018.02.115.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Roberts WC, Ko JM, Moore TR, Jones WH. Causes of pure aortic regurgitation in patients having isolated aortic valve replacement at a single US tertiary hospital (1993 to 2005). Circulation. 2006;114(5):422–9. https://doi.org/10.1161/CIRCULATIONAHA.106.622761.

    Article  PubMed  Google Scholar 

  11. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1-39.e14. https://doi.org/10.1016/j.echo.2014.10.003.

    Article  PubMed  Google Scholar 

  12. • Evangelista A, Sitges M, Jondeau G, et al. Multimodality imaging in thoracic aortic diseases: a clinical consensus statement from the European Association of Cardiovascular Imaging and the European Society of Cardiology working group on aorta and peripheral vascular diseases. Eur Hear J - Cardiovasc Imaging. 2023;24(5):e65–85. https://doi.org/10.1093/ehjci/jead024. As one of the etiologies of aortic regurgitation is the presence of aortic pathology, this document provides the most up to date evidence on the use of multimodality imaging for the assessment of aortic pathology.

    Article  Google Scholar 

  13. Boodhwani M, de Kerchove L, Glineur D, et al. Repair-oriented classification of aortic insufficiency: impact on surgical techniques and clinical outcomes. J Thorac Cardiovasc Surg. 2009;137(2):286–94. https://doi.org/10.1016/j.jtcvs.2008.08.054.

    Article  PubMed  Google Scholar 

  14. Le Polain De Waroux JB, Pouleur AC, Goffinet C, et al. Functional anatomy of aortic regurgitation. Circulation. 2007;116(11_supplement):I264–9. https://doi.org/10.1161/CIRCULATIONAHA.106.680074.

    Article  PubMed  Google Scholar 

  15. Lemaire G, Vancraeynest D. Echocardiography of the aortic root: a practical approach for aortic valve-sparing surgery. Ann Cardiothorac Surg. 2023;12(3):194–212. https://doi.org/10.21037/acs-2022-avs1-14.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zoghbi WA, Adams D, Bonow RO, et al. Recommendations for noninvasive evaluation of native valvular regurgitation. J Am Soc Echocardiogr. 2017;30(4):303–71. https://doi.org/10.1016/j.echo.2017.01.007.

    Article  PubMed  Google Scholar 

  17. Takenaka K, Dabestani A, Gardin JM, et al. A simple Doppler echocardiographic method for estimating severity of aortic regurgitation. Am J Cardiol. 1986;57(15):1340–3. https://doi.org/10.1016/0002-9149(86)90215-8.

    Article  CAS  PubMed  Google Scholar 

  18. Fang L, Hsiung MC, Miller AP, et al. Assessment of aortic regurgitation by live three-dimensional transthoracic echocardiographic measurements of vena contracta area: usefulness and validation. Echocardiography. 2005;22(9):775–81. https://doi.org/10.1111/j.1540-8175.2005.00171.x.

    Article  PubMed  Google Scholar 

  19. Hlubocká Z, Kočková R, Línková H, et al. Assessment of asymptomatic severe aortic regurgitation by Doppler-derived echo indices: comparison with magnetic resonance quantification. J Clin Med. 2021;11(1):152. https://doi.org/10.3390/jcm11010152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Choi J, Hong GR, Kim M, et al. Automatic quantification of aortic regurgitation using 3D full volume color doppler echocardiography: a validation study with cardiac magnetic resonance imaging. Int J Cardiovasc Imaging. 2015;31(7):1379–89. https://doi.org/10.1007/s10554-015-0707-x.

    Article  PubMed  Google Scholar 

  21. Ewe SH, Delgado V, van der Geest R, et al. Accuracy of three-dimensional versus two-dimensional echocardiography for quantification of aortic regurgitation and validation by three-dimensional three-directional velocity-encoded magnetic resonance imaging. Am J Cardiol. 2013;112(4):560–6. https://doi.org/10.1016/j.amjcard.2013.04.025.

    Article  PubMed  Google Scholar 

  22. Mannacio V, Guadagno E, Mannacio L, et al. Comparison of left ventricular myocardial structure and function in patients with aortic stenosis and those with pure aortic regurgitation. Cardiology. 2015;132(2):111–8. https://doi.org/10.1159/000431283.

    Article  PubMed  Google Scholar 

  23. Borer JS, Truter S, Herrold EM, et al. Myocardial fibrosis in chronic aortic regurgitation. Circulation. 2002;105(15):1837–42. https://doi.org/10.1161/01.CIR.0000014419.71706.85.

    Article  CAS  PubMed  Google Scholar 

  24. Yang LT, Anand V, Zambito EI, et al. Association of echocardiographic left ventricular end-systolic volume and volume-derived ejection fraction with outcome in asymptomatic chronic aortic regurgitation. JAMA Cardiol. 2021;6(2):189. https://doi.org/10.1001/jamacardio.2020.5268.

    Article  PubMed  Google Scholar 

  25. Alashi A, Khullar T, Mentias A, et al. Long-term outcomes after aortic valve surgery in patients with asymptomatic chronic aortic regurgitation and preserved LVEF. JACC Cardiovasc Imaging. 2020;13(1):12–21. https://doi.org/10.1016/j.jcmg.2018.12.021.

    Article  PubMed  Google Scholar 

  26. Ewe SH, Haeck MLA, Ng ACT, et al. Detection of subtle left ventricular systolic dysfunction in patients with significant aortic regurgitation and preserved left ventricular ejection fraction: speckle tracking echocardiographic analysis. Eur Hear J - Cardiovasc Imaging. Published online March 2015. https://doi.org/10.1093/ehjci/jev019.

  27. Alashi A, Mentias A, Abdallah A, et al. Incremental prognostic utility of left ventricular global longitudinal strain in asymptomatic patients with significant chronic aortic regurgitation and preserved left ventricular ejection fraction. JACC Cardiovasc Imaging. 2018;11(5):673–82. https://doi.org/10.1016/j.jcmg.2017.02.016.

    Article  PubMed  Google Scholar 

  28. Meucci MC, Butcher SC, Galloo X, et al. Noninvasive left ventricular myocardial work in patients with chronic aortic regurgitation and preserved left ventricular ejection fraction. J Am Soc Echocardiogr. 2022;35(7):703-711.e3. https://doi.org/10.1016/j.echo.2022.01.008.

    Article  PubMed  Google Scholar 

  29. Wahi S, Haluska B, Pasquet A, Case C, Rimmerman CM, Marwick TH. Exercise echocardiography predicts development of left ventricular dysfunction in medically and surgically treated patients with asymptomatic severe aortic regurgitation. Heart. 2000;84(6):606–14. https://doi.org/10.1136/heart.84.6.606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lancellotti P, Dulgheru R, Go YY, et al. Stress echocardiography in patients with native valvular heart disease. Heart. 2018;104(10):807–13. https://doi.org/10.1136/heartjnl-2017-311682.

    Article  PubMed  Google Scholar 

  31. Bonow RO, Borer JS, Rosing DR, et al. Preoperative exercise capacity in symptomatic patients with aortic regurgitation as a predictor of postoperative left ventricular function and long-term prognosis. Circulation. 1980;62(6):1280–90. https://doi.org/10.1161/01.cir.62.6.1280.

    Article  CAS  PubMed  Google Scholar 

  32. Kramer CM, Barkhausen J, Bucciarelli-Ducci C, Flamm SD, Kim RJ, Nagel E. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J Cardiovasc Magn Reson. 2020;22(1):17. https://doi.org/10.1186/s12968-020-00607-1.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Monney P, Piccini D, Rutz T, et al. Single centre experience of the application of self navigated 3D whole heart cardiovascular magnetic resonance for the assessment of cardiac anatomy in congenital heart disease. J Cardiovasc Magn Reson. 2015;17(1):55. https://doi.org/10.1186/s12968-015-0156-7.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kammerlander AA, Wiesinger M, Duca F, et al. Diagnostic and prognostic utility of cardiac magnetic resonance imaging in aortic regurgitation. JACC Cardiovasc Imaging. 2019;12(8):1474–83. https://doi.org/10.1016/j.jcmg.2018.08.036.

    Article  PubMed  Google Scholar 

  35. Garijo JM, Roscoe A, Farrell A, Hanneman K, Tsang W. Multimodality quantitative assessment of aortic regurgitation: a systematic review. Cardiol Rev. 2023;10:1097. https://doi.org/10.1097/CRD.0000000000000553.

    Article  Google Scholar 

  36. Chatzimavroudis GP, Walker PG, Oshinski JN, Franch RH, Pettigrew RI, Yoganathan AP. Slice location dependence of aortic regurgitation measurements with MR phase velocity mapping. Magn Reson Med. 1997;37(4):545–51. https://doi.org/10.1002/mrm.1910370412.

    Article  CAS  PubMed  Google Scholar 

  37. Polacin M, Geiger J, Burkhardt B, Callaghan FM, Valsangiacomo E, Kellenberger C. Quantitative evaluation of aortic valve regurgitation in 4D flow cardiac magnetic resonance: at which level should we measure? BMC Med Imaging. 2022;22(1):169. https://doi.org/10.1186/s12880-022-00895-2.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Minderhoud SCS, van der Velde N, Wentzel JJ, et al. The clinical impact of phase offset errors and different correction methods in cardiovascular magnetic resonance phase contrast imaging: a multi-scanner study. J Cardiovasc Magn Reson. 2020;22(1):68. https://doi.org/10.1186/s12968-020-00659-3.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gatehouse PD, Rolf MP, Graves MJ, et al. Flow measurement by cardiovascular magnetic resonance: a multi-centre multi-vendor study of background phase offset errors that can compromise the accuracy of derived regurgitant or shunt flow measurements. J Cardiovasc Magn Reson. 2010;12(1):5. https://doi.org/10.1186/1532-429X-12-5.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bratt A, Kim J, Pollie M, et al. Machine learning derived segmentation of phase velocity encoded cardiovascular magnetic resonance for fully automated aortic flow quantification. J Cardiovasc Magn Reson. 2019;21(1):1. https://doi.org/10.1186/s12968-018-0509-0.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Iwamoto Y, Inage A, Tomlinson G, et al. Direct measurement of aortic regurgitation with phase-contrast magnetic resonance is inaccurate: proposal of an alternative method of quantification. Pediatr Radiol. 2014;44(11):1358–69. https://doi.org/10.1007/s00247-014-3017-x.

    Article  PubMed  Google Scholar 

  42. Bissell MM, Raimondi F, Ait Ali L, et al. 4D Flow cardiovascular magnetic resonance consensus statement: 2023 update. J Cardiovasc Magn Reson. 2023;25(1):40. https://doi.org/10.1186/s12968-023-00942-z.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Myerson SG, D’arcy J, Mohiaddin R, et al. Aortic regurgitation quantification using cardiovascular magnetic resonance: association with clinical outcome. Circulation. 2012;126(12):1452–60. https://doi.org/10.1161/CIRCULATIONAHA.111.083600.

    Article  PubMed  Google Scholar 

  44. Harris AW, Krieger EV, Kim M, et al. Cardiac magnetic resonance imaging versus transthoracic echocardiography for prediction of outcomes in chronic aortic or mitral regurgitation. Am J Cardiol. 2017;119(7):1074–81. https://doi.org/10.1016/j.amjcard.2016.12.017.

    Article  PubMed  Google Scholar 

  45. Postigo A, Pérez-David E, Revilla A, et al. A comparison of the clinical efficacy of echocardiography and magnetic resonance for chronic aortic regurgitation. Eur Hear J - Cardiovasc Imaging. 2022;23(3):392–401. https://doi.org/10.1093/ehjci/jeaa338.

    Article  Google Scholar 

  46. Hashimoto G, Enriquez-Sarano M, Stanberry LI, et al. Association of left ventricular remodeling assessment by cardiac magnetic resonance with outcomes in patients with chronic aortic regurgitation. JAMA Cardiol. 2022;7(9):924. https://doi.org/10.1001/jamacardio.2022.2108.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Malahfji M, Crudo V, Kaolawanich Y, et al. Influence of cardiac remodeling on clinical outcomes in patients with aortic regurgitation. J Am Coll Cardiol. 2023;81(19):1885–98. https://doi.org/10.1016/j.jacc.2023.03.001.

    Article  PubMed  Google Scholar 

  48. Podlesnikar T, Delgado V, Bax JJ. Cardiovascular magnetic resonance imaging to assess myocardial fibrosis in valvular heart disease. Int J Cardiovasc Imaging. 2018;34(1):97–112. https://doi.org/10.1007/s10554-017-1195-y.

    Article  PubMed  Google Scholar 

  49. Kellman P, Arai AE, McVeigh ER, Aletras AH. Phase-sensitive inversion recovery for detecting myocardial infarction using gadolinium-delayed hyperenhancement. Magn Reson Med. 2002;47(2):372–83. https://doi.org/10.1002/mrm.10051.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S. Cardiac T1 Mapping and Extracellular Volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magn Reson. 2017;18(1):1–12. https://doi.org/10.1186/s12968-016-0308-4.

    Article  Google Scholar 

  51. Messroghli DR, Moon JC, Ferreira VM, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imagi. J Cardiovasc Magn Reson. 2017;19(1):75. https://doi.org/10.1186/s12968-017-0389-8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Azevedo CF, Nigri M, Higuchi ML, et al. Prognostic significance of myocardial fibrosis quantification by histopathology and magnetic resonance imaging in patients with severe aortic valve disease. J Am Coll Cardiol. 2010;56(4):278–87. https://doi.org/10.1016/j.jacc.2009.12.074.

    Article  PubMed  Google Scholar 

  53. Malahfji M, Senapati A, Tayal B, et al. Myocardial scar and mortality in chronic aortic regurgitation. J Am Heart Assoc. 2020;9(23). https://doi.org/10.1161/JAHA.120.018731.

  54. Senapati A, Malahfji M, Debs D, et al. Regional replacement and diffuse interstitial fibrosis in aortic regurgitation. JACC Cardiovasc Imaging. 2021;14(11):2170–82. https://doi.org/10.1016/j.jcmg.2021.04.028.

    Article  PubMed  Google Scholar 

  55. Sinn M, Petersen J, Lenz A, et al. Cardiac T1 mapping enables risk prediction of LV dysfunction after surgery for aortic regurgitation. Front Cardiovasc Med. 2023;10. https://doi.org/10.3389/fcvm.2023.1155787.

  56. Michelena HI, Della Corte A, Evangelista A, et al. International consensus statement on nomenclature and classification of the congenital bicuspid aortic valve and its aortopathy, for clinical, surgical, interventional and research purposes. Eur J Cardio-Thoracic Surg. 2021;60(3):448–76. https://doi.org/10.1093/ejcts/ezab038.

    Article  Google Scholar 

  57. Blanke P, Weir-McCall JR, Achenbach S, et al. Computed Tomography Imaging in the Context of Transcatheter Aortic Valve Implantation (TAVI)/Transcatheter Aortic Valve Replacement (TAVR). JACC Cardiovasc Imaging. 2019;12(1):1–24. https://doi.org/10.1016/j.jcmg.2018.12.003.

    Article  PubMed  Google Scholar 

  58. Harvey JJ, Hoey ETD, Ganeshan A. Imaging of the aortic valve with MRI and CT angiography. Clin Radiol. 2013;68(12):1192–205. https://doi.org/10.1016/j.crad.2013.07.014.

    Article  CAS  PubMed  Google Scholar 

  59. Poletti E, De Backer O, Scotti A, et al. Transcatheter aortic valve replacement for pure native aortic valve regurgitation. JACC Cardiovasc Interv. 2023;16(16):1974–85. https://doi.org/10.1016/j.jcin.2023.07.026.

    Article  PubMed  Google Scholar 

  60. Yoon SH, Schmidt T, Bleiziffer S, et al. Transcatheter aortic valve replacement in pure native aortic valve regurgitation. J Am Coll Cardiol. 2017;70(22):2752–63. https://doi.org/10.1016/j.jacc.2017.10.006.

    Article  PubMed  Google Scholar 

  61. Hamid N, Ranard LS, Khalique OK, et al. Commissural alignment after transfemoral transcatheter aortic valve replacement with the JenaValve trilogy system. JACC Cardiovasc Interv. 2021;14(18):2079–81. https://doi.org/10.1016/j.jcin.2021.07.025.

    Article  PubMed  Google Scholar 

  62. Flores-Umanzor E, Keshvara R, Reza S, et al. A systematic review of contrast-enhanced computed tomography calcium scoring methodologies and impact of aortic valve calcium burden on TAVI clinical outcomes. J Cardiovasc Comput Tomogr Published online. 2023. https://doi.org/10.1016/j.jcct.2023.08.010.

    Article  Google Scholar 

  63. Bax JJ, Delgado V, Hahn RT, et al. Transcatheter Aortic Valve Replacement. JACC Cardiovasc Imaging. 2020;13(1):124–39. https://doi.org/10.1016/j.jcmg.2018.10.037.

    Article  PubMed  Google Scholar 

  64. Gogia S, Vahl TP, Thourani VH, et al. Cardiac computed tomography angiography anatomical characterization of patients screened for a dedicated transfemoral transcatheter valve system for primary aortic regurgitation. Struct Hear. 2023;7(3): 100164. https://doi.org/10.1016/j.shj.2023.100164.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.T. contributed with the section on cardiac magnetic resonance and provided the corresponding table and figures for that section. E.F. contributed with the section on echocardiography and provided the figures in that section. C.E. contributed with the section on computed tomography and provided the figures in that section. V.D. designed the outline, provided supervision and guidance in the writing of the review, contributed with the introduction and conclusions sections, merged all the sections, supervised figures and tables, revised all the sections. All the authors read and provided suggestions and final approval of the manuscript.

Corresponding author

Correspondence to Victoria Delgado.

Ethics declarations

Conflict of Interest

Victoria Delgado received speaker fees from Edwards Lifesciences, GE Healthcare, Novartis, Philips, and MSD and consulting fees from Novo Nordisk and Edwards Lifesciences. The remaining authors have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrer-Sistach, E., Teis, A., Escabia, C. et al. Assessment of the Severity of Aortic Regurgitation by Noninvasive Imaging. Curr Cardiol Rep 26, 1–14 (2024). https://doi.org/10.1007/s11886-023-02011-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-02011-4

Keywords

Navigation