Skip to main content
Log in

Riboflavin-Induced Photocrosslinking of Highly Concentrated Collagen: Printing Accuracy, Degradation Time, and Cytocompatibility

  • MEDICAL BIOTECHNOLOGY
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The effect of riboflavin-induced collagen photocrosslinking on the scaffold printing accuracy, namely on the area of formed niches and filament thickness, as well as on the degradation time and biocompatibility of scaffolds, has been studied. The thickness of the filaments in the riboflavin-modified scaffolds was 13–29% less and the niche area was 23–40% larger than in the control group without riboflavin. The riboflavin addition reduced weight loss and increased the scaffold degradation time in the buffer solution and collagenase solution by 1.2–1.3, and 1.4–2.0 times, respectively, depending on the time of exposure to UV light. The existence of an optimal illumination interval was established. Cultivation of mesenchymal stem cells on a riboflavin-crosslinked scaffold for a week did not lead to a decrease in their viability and proliferation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. A counter stroke is printed to prepare the device for smooth filament extrusion.

REFERENCES

  1. Meyer, M., Processing of collagen based biomaterials and the resulting materials properties, Biomed. Eng. Online, 2019, vol. 18, no. 1. https://doi.org/10.1186/s12938-019-0647-0

  2. Jafari, H., Lista, A., Siekapen, M., Ghaffari-Bohlouli, P., Nie, L., Alimoradi, H., and Shavandi, A., Fish collagen: extraction, characterization, and applications for biomaterials engineering, Polymers (Basel), 2020, vol. 12, no. 10, p. 2230. https://doi.org/10.3390/polym12102230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tytgat, L., Dobos, A., Markovic, M., Van Damme, L., Van Hoorick, J., Bray, F., Thienpont, H., Ottevaere, H., Dubruel, P., Ovsianikov, A., and Van Vlierberghe, S., High-resolution 3D bioprinting of photo-cross-linkable recombinant collagen to serve tissue engineering applications, Biomacromolecules, 2020, vol. 21, no. 10, pp. 3997–4007. https://doi.org/10.1021/acs.biomac.0c00386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Werkmeister, J.A. and Ramshaw, J.A.M., Recombinant protein scaffolds for tissue engineering, Biomed. Mater., 2012, vol. 7, p. 012002. https://doi.org/10.1088/1748-6041/7/1/012002

    Article  CAS  PubMed  Google Scholar 

  5. Koide, T., Designed triple-helical peptides as tools for collagen biochemistry and matrix engineering, Proc. R. Soc. London, Ser. B., 2007, vol. 362, no. 1484, pp. 1281–1291. https://doi.org/10.1098/rstb.2007.2115

    Article  CAS  Google Scholar 

  6. Yang, X., Lu, Z., Wu, H., Li, W., Zheng, L., and Zhao, J., Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering, Mater. Sci. Eng. C Mater. Biol. Appl., 2018, vol. 83, pp. 195–201. https://doi.org/10.1016/j.msec.2017.09.002

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, Y., Zhou, D., Chen, J., Zhang, X., Li, X., Zhao, W., and Xu, T., Biomaterials based on marine resources for 3D bioprinting applications, Mar. Drugs, 2019, vol. 17, p. 555. https://doi.org/10.3390/md17100555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chan, B.P. and So, K.F., Photochemical crosslinking improves the physicochemical properties of collagen scaffolds, J. Biomed. Mater. Res. Part A, 2005, vol. 75, no. 3, pp. 689–701. https://doi.org/10.1002/jbm.a.30469

    Article  CAS  Google Scholar 

  9. Rich, H., Odlyha, M., Cheema, U., Mudera, V., and Bozec, L., Effects of photochemical riboflavin-mediated crosslinks on the physical properties of collagen constructs and fibrils, J. Mater. Sci. Mater. Med., 2014, vol. 25, no. 1, pp. 11–21. https://doi.org/10.1007/s10856-013-5038-7

    Article  CAS  PubMed  Google Scholar 

  10. Kamimura, W., Koyama, H., Miyata, T., and Takato, T., Sugar-based crosslinker forms a stable atelocollagen hydrogel that is a favorable microenvironment for 3D cell culture, J. Biomed. Mater. Res. Part A, 2014, vol. 102, pp. 4309–4316. https://doi.org/10.1002/jbm.a.35106

    Article  CAS  Google Scholar 

  11. Bi, L., Cao, Z., Hu, Y., Song, Y., Yu, L., Yang, B., Mu, J., Huang, Z., and Han, Y., Effects of different cross-linking conditions on the properties of genipin-cross-linked chitosan/collagen scaffolds for cartilage tissue engineering, J. Mater. Sci. Mater. Med., 2011, vol. 22, no. 1, pp. 51–62. https://doi.org/10.1007/s10856-010-4177-3

    Article  CAS  PubMed  Google Scholar 

  12. Diamantides, N., Wang, L., Pruiksma, T., Siemiatkoski, J., Dugopolski, C., Shortkroff, S., Kennedy, S., and Bonassar, L.J., Correlating rheological properties and printability of collagen bioinks: the effects of riboflavin photocrosslinking and pH, Biofabrication, 2017, vol. 9, no. 3, p. 034102. https://doi.org/10.1088/1758-5090/aa780f

    Article  CAS  PubMed  Google Scholar 

  13. Orban, J.M., Wilson, L.B., Kofroth, J.A., El-Kurdi, M.S., Maul, T.M., and Vorp, D.A., Crosslinking of collagen gels by transglutaminase, J. Biomed. Mater. Res. A, 2004, vol. 68, no. 4, pp. 756–762. https://doi.org/10.1002/jbm.a.20110

    Article  CAS  PubMed  Google Scholar 

  14. Brown, J.H., Das, P., DiVito, M.D., Ivancic, D., Tan, L.P., and Wertheim, J.A., Nanofibrous PLGA electrospun scaffolds modified with type I collagen influence hepatocyte function and support viability in vitro, Acta Biomater., 2018, vol. 73, pp. 217–227. https://doi.org/10.1016/j.actbio.2018.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jiang, J.P., Liu, X.Y., Zhao, F., Zhu, X., Li, X.Y., Niu, X.G., Yao, Z.T., Dai, C., Xu, H.Y., Ma, K., Chen, X.Y., and Zhang, S., Three-dimensional bioprinting collagen/silk fibroin scaffold combined with neural stem cells promotes nerve regeneration after spinal cord injury, Neural Regen. Res., 2020, vol. 15, no. 5, pp. 959–968. https://doi.org/10.4103/1673-5374.268974

    Article  CAS  PubMed  Google Scholar 

  16. Peng, Y.Y., Glattauer, V., and Ramshaw, J.A.M., Stabilisation of collagen sponges by glutaraldehyde vapour crosslinking, Int. J. Biomater., 2017, vol. 2017, p. 8947823. https://doi.org/10.1155/2017/8947823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chandran, P.L., Paik, D.C., and Holmes, J.W., Structural mechanism for alteration of collagen gel mechanics by glutaraldehyde crosslinking, Connect Tissue Res., 2012, vol. 53, no. 4, pp. 285–297. https://doi.org/10.3109/03008207.2011.640760

    Article  CAS  PubMed  Google Scholar 

  18. Kamimura, W., Koyama, H., Miyata, T., and Takato, T., Sugar-based crosslinker forms a stable atelocollagen hydrogel that is a favorable microenvironment for 3D cell culture, J. Biomed. Mater. Res. Part A., 2014, vol. 102, pp. 4309–4316. https://doi.org/10.1002/jbm.a.35106

    Article  CAS  Google Scholar 

  19. Yeo, M.G. and Kim, G.H., A cell-printing approach for obtaining hASC-laden scaffolds by using a collagen/polyphenol bioink, Biofabrication, 2017, vol. 9, no. 2, p. 025004. https://doi.org/10.1088/1758-5090/aa699728402968

    Article  PubMed  Google Scholar 

  20. Jafari-Sabet, M., Nasiri, H., and Ataee, R., The effect of crosslinking agents and collagen concentrations on properties of collagen scaffolds, J. Arch. Mil. Med., 2016, vol. 4. https://doi.org/10.5812/JAMM.42367

  21. Chen, R., Ho, H., and Sheu, T., Characterization of collagen matrices crosslinked using microbial transglutaminase, Biomaterials, 2005, vol. 26, no. 20, pp. 4229–4235. https://doi.org/10.1016/j.biomaterials.2004.11.012

    Article  CAS  PubMed  Google Scholar 

  22. Nakada, A., Shigeno, K., Sato, T., Hatayama, T., Wakatsuki, M., and Nakamura, T., Optimal dehydrothermal processing conditions to improve biocompatibility and durability of a weakly denatured collagen scaffold, J. Biomed. Mater. Res. Part B Appl. Biomater., 2017, vol. 105, pp. 2301–2307. https://doi.org/10.1002/jbm.b.33766

    Article  CAS  Google Scholar 

  23. Pawelec, K.M., Confalonieri, D., Ehlicke, F., van Boxtel, H.A., Walles, H., and Kluijtmans, S.G.J.M., Osteogenesis and mineralization of mesenchymal stem cells in collagen type I-based recombinant peptide scaffolds, J. Biomed. Mater. Res. Part A., 2017, vol. 105, no. 7, pp. 1856–1866. https://doi.org/10.1002/jbm.a.36049

    Article  CAS  Google Scholar 

  24. Weadock, K., Miller, E., Keuffel, E., and Dunn, M., Effect of physical crosslinking methods on collagen-fiber durability in proteolytic solutions, J. Biomed. Mater. Res., 1996, vol. 32, pp. 221–226. https://doi.org/10.1002/(SICI)1097-4636(199610)-32:2<221::AID-JBM11>3.0.CO;2-M

    Article  CAS  PubMed  Google Scholar 

  25. Choi, G. and Cha, H.J., Recent advances in the development of nature-derived photocrosslinkable biomaterials for 3D printing in tissue engineering, Biomater. Res., 2019, vol. 23, p. 18. https://doi.org/10.1186/s40824-019-0168-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ionita, G. and Matei, I., Application of riboflavin photochemical properties in hydrogel synthesis, Biophys. Chem., Adv. Appl., 2019. https://doi.org/10.5772/intechopen.88855

  27. Tonndorf, R., Gossla, E., Aibibu, D., Lindner, M., Gelinsky, M., and Cherif, C., Wet spinning and ribof lavin crosslinking of collagen type I/III filaments, Biomed Mater., 2018, vol. 14, no. 1, p. 015007. https://doi.org/10.1088/1748-605X/aaebda

    Article  PubMed  Google Scholar 

  28. Raiskup, F. and Spoerl, E., Corneal crosslinking with ribof lavin and ultraviolet A. I, Principles Ocul. Surf., 2013, vol. 11, no. 2, pp. 65–74. https://doi.org/10.1016/j.jtos.2013.01.002

    Article  PubMed  Google Scholar 

  29. Maier, P., Reinhard, T., and Kohlhaas, M., Corneal collagen cross-linking in the stabilization of keratoconus, Dtsch. Arztebl. Int., 2019, vol. 116, no. 11, pp. 184–190. https://doi.org/10.3238/arztebl.2019.0184

    Article  PubMed  PubMed Central  Google Scholar 

  30. Daood, U., Heng, C.S., Neo Chiew Lian, J., and Fawzy, A.S., In vitro analysis of ribof lavin-modified, experimental, two-step etch-and-rinse dentin adhesive: Fourier transform infrared spectroscopy and micro-Raman studies, Int. J. Oral. Sci., 2015, vol. 7, no. 2, pp. 110–124. https://doi.org/10.1038/ijos.2014.49

    Article  CAS  PubMed  Google Scholar 

  31. Grunert P., Borde B.H., Towne S.B., Moriguchi Y., Hudson K.D., Bonassar L.J., Hartl R. Ribof lavin crosslinked high-density collagen gel for the repair of annular defects in intervertebral discs: an in vivo study, Acta Biomater., 2015, vol. 26, pp. 215–224. https://doi.org/10.1016/j.actbio.2015.06.006

    Article  CAS  PubMed  Google Scholar 

  32. Choi, B., Kim, S., Lin, B., Bezouglaia, O., Kim, J., Evseenko, D., Aghaloo, T., and Lee, M., Visible-light-initiated hydrogels preserving cartilage extracellular signaling for inducing chondrogenesis of mesenchymal stem cells, Acta Biomater., 2015, vol. 12C, pp. 30–41. https://doi.org/10.1016/j.actbio.2014.10.013

    Article  CAS  Google Scholar 

  33. Heo, J., Koh, R.H., Shim, W., Kim, H.D., Yim, H.G., and Hwang, N.S., Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering, Drug Delivery Transl Res., 2016, vol. 6, no. 2, pp. 148–158. https://doi.org/10.1007/s13346-015-0224-4

    Article  CAS  Google Scholar 

  34. Cheema, U., Rong, Z., Kirresh, O., Macrobert, A.J., Vadgama, P., and Brown, R.A., Oxygen diffusion through collagen scaffolds at defined densities: implications for cell survival in tissue models, J. Tissue Eng. Regen. Med., 2012, vol. 6, no. 1, pp. 77–84. https://doi.org/10.1002/term.402

    Article  CAS  PubMed  Google Scholar 

  35. Smyshlyaev, I.A., Gil’fanov, S.I., Kopylov, V.A., Gil’mutdinov, R.G., Pulin, A.A., Korsakov, I.N., Gil’mutdinova, I.R., Petrikina, A.P., Eremin, P.S., Kryuchkova, O.V., Abel’tsev, V.P., Zagorodny, N.V., Zorin, V.L., Vasil’ev, V.S., Pupynin, D.Yu., and Eremin, I.I., Evaluation of safety and efficacy of intra-articular injection of stromal vascular adipose tissue fraction for the treatment of gonarthrosis: interim results of a clinical trial, Travmatol. Ortoped. Rossii, 2017, vol. 23, no. 3, pp. 17–31.

    Article  Google Scholar 

  36. Samchuk, D.P., Luk’yanova, E.N., Eremin, I.I., Zorin, V.L., Zorina, A.I., Grinakovskaya, O.S., Korsakov, I.N., Deev, R.V., Gil’mutdinova, I.R., Lazareva, N.L., Eremin, P.S., Petrikina, A.P., Gomzyakov, A.E., Timashkov, D.A., Vit’ko, N.K., Kotenko, K.V., Kopnin, P.B., and Pulin, A.A., Expression of myogenesis genes by gingival mucosal cells, Geny Kletki, 2015, vol. 10, no. 4, pp. 68–77.

    Google Scholar 

  37. Lu, M., Song, X., Yang, M., Kong, W., and Zhu, J., Combined effects of glutaraldehyde and ribof lavin/uv365 on the self-assembly of type I collagen molecules observed with atomic force microscopy, Int. J. Food Properties, 2018, vol. 21, no. 1, pp. 2181–2192. https://doi.org/10.1080/10942912.2018.1510837

    Article  CAS  Google Scholar 

  38. Ibusuki, S., Halbesma, G.J., Randolph, M.A., Redmond, R.W., Kochevar, I.E., and Gill, T.J., Photochemically cross-linked collagen gels as three-dimensional scaffolds for tissue engineering, Tissue Eng., 2007, vol. 13, no. 8, pp. 1995–2001. https://doi.org/10.1089/ten.2006.0153

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct thisparticular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Arguchinskaya.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by I. Gordon

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: EDTA, ethylenediamine tetraacetate; MSCs, mesenchymal stem cells; PBS, phosphate-buffered saline; PLA, polylactide; UV, ultraviolet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arguchinskaya, N.V., Beketov, E.E., Isaeva, E.V. et al. Riboflavin-Induced Photocrosslinking of Highly Concentrated Collagen: Printing Accuracy, Degradation Time, and Cytocompatibility. Appl Biochem Microbiol 59, 1062–1070 (2023). https://doi.org/10.1134/S0003683823080033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683823080033

Keywords:

Navigation