Skip to main content
Log in

Ba2Ga8GeS16: new nonlinear optical crystals with high laser-induced damage threshold for parametric down-conversion in mid-IR

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This work is devoted to the study of a new nonlinear crystal Ba2Ga8GeS16. The paper presents a theoretical study of the tuning characteristics of an optical parametric oscillator based on the specified crystal. It has been established that phase matching in this crystal is possible only for the oo-e type of interaction at the selected pump radiation wavelengths. The tuning range extends up to the long-wavelength limit of the crystal transparency. To achieve such a wide tuning range, the crystal must be rotated by 19.7\(^{\circ }\) using a laser with a wavelength of 1.064 \(\mu \hbox {m}\) as a pump source and by 0.83\(^{\circ }\) using a pump wavelength of 1.5 \(\upmu \hbox {m}\). In addition, the laser-induced damage threshold of the Ba2Ga8GeS16 crystal was studied using the R-on-1 method. The surface damage threshold of this new material is 7 \( \pm \) 0.5 J/cm2, indicating its high resistance to radiation damage. The obtained laser-induced damage threshold value is an important guideline for the correct and safe usage of the new crystal in high-pulse energy laser systems and nonlinear optical applications. High laser-induced damage threshold in combination with high nonlinearity and a range of transparency makes Ba2Ga8GeS16 a promising material for various applications, including medical laser surgery, where the high laser-induced damage threshold of nonlinear materials is of decisive importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Y.V. Kistenev, A.V. Borisov, D.A. Kuzmin, O.V. Penkova, N. Kostyukova, A.A. Karapuzikov, Exhaled air analysis using wideband wave number tuning range infrared laser photoacoustic spectroscopy. Journal of Biomedical Optics 22(1), 017002 (2017). https://doi.org/10.1117/1.JBO.22.1.017002

    Article  ADS  Google Scholar 

  2. A.K.Y. Ngai, S.T. Persijn, G. Basum, F.J.M. Harren, Automatically tunable continuous-wave optical parametric oscillator for high-resolution spectroscopy and sensitive trace-gas detection. Applied Physics B 85(2), 173–180 (2006). https://doi.org/10.1007/s00340-006-2362-3

    Article  Google Scholar 

  3. J. Hodgkinson, R.P. Tatam, Optical gas sensing: a review. Measurement Science and Technology 24(1), 012004 (2012). https://doi.org/10.1088/0957-0233/24/1/012004

    Article  ADS  Google Scholar 

  4. V.A. Serebryakov, E.V. Bol̆ko, N.N. Petrishchev, A.V. Yan, Medical applications of mid-IR lasers problems and prospects. J. Opt. Technol. 77(1), 6–17 (2010). https://doi.org/10.1364/JOT.77.000006

  5. G.S.E.M. Hutson, Shane: Advances in the physical understanding of laser surgery at 6.45 microns. Proceeding of the 26\(^{th}\) International Free Electron Laser Conference and 11\(^{th}\) User Workshop: FRAIS01. Published in JACoW (2004)

  6. S. Chandra, T.H. Allik, G. Catella, J.A. Hutchinson, Tunable output around 8 \(\mu \)m from a single step \(\text{AgGaS}_{2}\) OPO pumped at 1.064 \(\mu \)m. Adv Solid State Lasers (1998) https://doi.org/10.1364/ASSL.1998.FC15

  7. P.A. Budni, M.G. Knights, E.P. Chicklis, K.L. Schepler, Kilohertz \(\text{ AgGaS }e_{2}\) optical parametric oscillator pumped at 2 \(\mu \)m. Opt. Lett. 18(13), 1068–1070 (1993). https://doi.org/10.1364/OL.18.001068

    Article  ADS  Google Scholar 

  8. U. Simon, Z. Benko, M.W. Sigrist, R.F. Curl, F.K. Tittel, Design considerations of an infrared spectrometer based on difference-frequency generation in \(\text{ AgGaSe}_{2}\). Appl. Opt. 32(33), 6650–6655 (1993). https://doi.org/10.1364/AO.32.006650

    Article  ADS  Google Scholar 

  9. B.-W. Liu, H.-Y. Zeng, M.-J. Zhang, Y.-H. Fan, G.-C. Guo, J.-S. Huang, Z.-C. Dong, Syntheses, structures, and nonlinear-optical properties of metal sulfides \(\text{ Ba}_{2}\text{ Ga}_{8}\text{ MS}_{16}\) (M = Si, Ge). Inorganic Chemistry 54(3), 976–981 (2015). https://doi.org/10.1021/ic502362f

    Article  Google Scholar 

  10. V.V. Badikov, D.V. Badikov, G.S. Shevyrdyaeva, K. Kato, N. Umemura, K. Miyata, V.L. Panyutin, V. Petrov, Hexagonal \(\text{ Ba}_{2}\text{ Ga}_{8}\text{ GeS}_{16}\) for nonlinear optics in the mid-IR. Optica Publishing Group (2022). https://doi.org/10.1364/MICS.2022.MF5C.6

    Article  Google Scholar 

  11. V.V. Badikov, D.V. Badikov, G.S. Shevyrdyaeva, V.B. Laptev, A.A. Melnikov, S.V. Chekalin, Optical and generation characteristics of new nonlinear ba2ga8ges16 and ba2ga8(gese2)s14 crystals for the mid-ir range. Quantum Electronics 52(3), 296 (2022). https://doi.org/10.1070/QEL17995

    Article  ADS  Google Scholar 

  12. N.Y. Kostyukova, D.B. Kolker, K.G. Zenov, A.A. Boyko, M.K. Starikova, I.V. Sherstov, A.A. Karapuzikov, Mercury thiogallate nanosecond optical parametric oscillator continuously tunable from 4.2 to 10.8 \(\mu \)m. Laser Physics Letters 12(9), 095401 (2015). https://doi.org/10.1088/1612-2011/12/9/095401

    Article  ADS  Google Scholar 

  13. A.A. Boyko, G.M. Marchev, V. Petrov, V. Pasiskevicius, D.B. Kolker, A. Zukauskas, N.Y. Kostyukova, Intracavity-pumped, cascaded \(\text{ AgGaSe}_{2}\) optical parametric oscillator tunable from 5.8 to 18 \(\mu \)m. Opt. Express 23(26), 33460–33465 (2015). https://doi.org/10.1364/OE.23.033460

    Article  ADS  Google Scholar 

  14. N.Y. Kostyukova, E.Y. Erushin, A.A. Boyko, D.B. Kolker, Radiation source based on an optical parametric oscillator with MgO : PPLN crystal and volume Bragg grating, tunable in ranges of 2050–2117 and 2140–2208 nm. Quantum Electronics 52(2), 144 (2022). https://doi.org/10.1070/QEL17981

    Article  ADS  Google Scholar 

  15. M. Henriksson, M. Tiihonen, V. Pasiskevicius, F. Laurell, Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator. Applied Physics B 88(1), 37–41 (2007). https://doi.org/10.1007/s00340-007-2661-3

    Article  Google Scholar 

  16. B. Napier, O. Bang, C. Markos, P. Moselund, L. Huot, F.J.M. Harren, A. Khodabakhsh, H. Martin, F.O. Briano, L. Balet, Ultra-broadband infrared gas sensor for pollution detection: the triage project. Journal of Physics: Photonics 3(3), 031003 (2021). https://doi.org/10.1088/2515-7647/ac0542

    Article  ADS  Google Scholar 

  17. F. Xie, B. Wu, G. You, C. Chen, Characterization of LiB\(_3\)O\(_5\) crystal for second-harmonic generation. Opt. Lett. 16(16), 1237–1239 (1991). https://doi.org/10.1364/OL.16.001237

    Article  ADS  Google Scholar 

  18. A. Tyazhev, V. Vedenyapin, G. Marchev, L. Isaenko, D. Kolker, S. Lobanov, V. Petrov, A. Yelisseyev, M. Starikova, J.-J. Zondy, Singly-resonant optical parametric oscillation based on the wide band-gap mid-ir nonlinear optical crystal LiGaS\(_2\). Optical Materials 35(8), 1612–1615 (2013). https://doi.org/10.1016/j.optmat.2013.03.016

    Article  ADS  Google Scholar 

  19. V. Badikov, D. Badikov, G. Shevyrdyaeva, A. Tyazhev, G. Marchev, V. Panyutin, F. Noack, V. Petrov, A. Kwasniewski, BaGa\(_4\)S\(_7\): wide-bandgap phase-matchable nonlinear crystal for the mid-infrared. Opt. Mater. Express 1(3), 316–320 (2011). https://doi.org/10.1364/OME.1.000316

    Article  ADS  Google Scholar 

  20. N.Y. Kostyukova, A.A. Boyko, E.Y. Erushin, A.I. Kostyukov, V.V. Badikov, D.V. Badikov, D.B. Kolker, Laser-induced damage threshold of BaGa\(_4\)Se\(_7\) and BaGa\(_2\)GeSe\(_6\) nonlinear crystals at 1.053 \(\mu \)m. J. Opt. Soc. Am. B 36(8), 2260–2265 (2019). https://doi.org/10.1364/JOSAB.36.002260

    Article  ADS  Google Scholar 

Download references

Funding

The research of laser-induced damage threshold was carried out with financial support as a part of the development program of NSTU (Project No. S23-22). The model studies of tuning characteristics were carried out with financial support from the Ministry of Science and Higher Education of the Russian Federation (Project No. FSUS-2020-0036).

Author information

Authors and Affiliations

Authors

Contributions

Crystal growing, DB, GSh, GSa; recording the transmission spectrum, NK; computations, AL; carrying out measurements and processing data, EE and AL; writing—original draft preparation, EE and NK; writing—review and editing, AB, EE, NK, DB. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Evgenii Erushin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erushin, E., Kostyukova, N., Boyko, A. et al. Ba2Ga8GeS16: new nonlinear optical crystals with high laser-induced damage threshold for parametric down-conversion in mid-IR. Appl. Phys. B 130, 10 (2024). https://doi.org/10.1007/s00340-023-08152-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08152-2

Navigation