Skip to main content
Log in

Base Fluids, Its Temperature and Heat Source on MHD Couette–Poiseuille Nanofluid Flow through Slippy Porous Microchannel with Convective-Radiative Condition: Entropy Analysis

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The intention behind this research work is to analyze the flow, heat transfer and entropy generation in a vertical channel filled with a nanofluid. The vertical microchannel is made of two parallel porous and slippy plates. The hot fluid is injected from the left side and succeeded from the right side. Fluid flow within the channel is induced due to an applied favorable/adverse pressure gradient (due to Couette–Poiseuille flow), right plate movement, buoyancy force due to the temperature difference of the channel plates in the presence of heat generation/absorption inside the channel and subjected to a constant applied transverse magnetic field. The resulting governing equations are solved numerically by the shooting method. The conventional fluids are chosen as water, and ethylene glycol-water mixture. The nanoparticles are selected as Al2O3 and CuO. Nanofluids modeling, which takes care of base fluid temperature, Brownian motion, diameter and concentration of nano particles, and base fluid physical properties are considered here. Roles of pressure gradient P (at the inlet), temperature of base fluids, heat generation/absorption, the density of the nanoparticle volume fraction on flow and heat transfer characteristics (velocity and temperature distribution, Nusselt number (Nu) distribution, entropy generation and Bejan Number) are investigated here. How the sequence of appearance of curves of flow and heat transfer characteristics (due to variation of aforesaid parameters) are disturbed by the presence of injection/suction, radiation and convective boundary condition is discussed here. A critical analysis is conducted on the individual contribution of irreversibilities due to heat flow, fluid friction and Joule heating to the total entropy generation. At last, we try to find an optimum condition at which local and global entropy generation are minimally generated in the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

REFERENCES

  1. Lee, S., Choi, S.S., Li, S., and Eastman, J., Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles, J. Heat Transfer, 1999, vol. 121, pp. 280–289.

    Article  Google Scholar 

  2. Wang, X.Q. and Mujumdar, A.S., Heat Transfer Characteristics of Nanofluids: A Review, Int. J. Thermal Sci., 2007, vol. 46, pp. 1–19.

    Article  Google Scholar 

  3. Choi, S.U. and Eastman, J.A., Enhancing Thermal Conductivity of Fluids with Nanoparticles, Tech. rep., Argonne National Lab., IL (United States), 1995.

  4. Buongiorno, J., Convective Transport in Nanofluids, J. Heat Transfer, 2006, vol. 128, pp. 240–250.

    Article  Google Scholar 

  5. Kuznetsov, A. and Nield, D., Natural Convective Boundary-Layer Flow of a Nanofluid past a Vertical Plate, Int. J. Thermal Sci., 2010, vol. 49, pp. 243–247.

    Article  Google Scholar 

  6. Makinde, O.D. and Aziz, A., Boundary Layer Flow of a Nanofluid past a Stretching Sheet with a Convective Boundary Condition, Int. J. Thermal Sci., 2011, vol. 50, pp. 1326–1332.

    Article  Google Scholar 

  7. Vajravelu, K., Prasad, K., Lee, J., Lee, C., Pop, I., and Van Gorder, R.A., Convective Heat Transfer in the Flow of Viscous Ag-Water and Cu-Water Nanofluids over a Stretching Surface, Int. J. Thermal Sci., 2011, vol. 50, pp. 843–851.

    Article  Google Scholar 

  8. Chen, B.S., Liu, C.C., et al., Entropy Generation in Mixed Convection Magnetohydrodynamic Nanofluid Flow in Vertical Channel, Int. J. Heat Mass Transfer, 2015, vol. 91, pp. 1026–1033.

    Article  Google Scholar 

  9. Noreen, S., Waheed, S., Lu, D., and Hussanan, A., Entropy Generation in Electromagnetohydrodynamic Water Based three Nano Fluids via Porous Asymmetric Microchannel, European J. Mech.-B/Fluids, 2021, vol. 85, pp. 458–466.

    Article  ADS  MathSciNet  Google Scholar 

  10. Xu, H. and Cui, J., Mixed Convection Flow in a Channel with Slip in a Porous Medium Saturated with a Nanofluid Containing Both Nanoparticles and Microorganisms, Int. J. Heat Mass Transfer, 2018, vol. 125, pp. 1043–1053.

    Article  Google Scholar 

  11. Xu, H. and Pop, I., Fully Developed Mixed Convection Flow in a Horizontal Channel Filled by a Nanofluid Containing Both Nanoparticles and Gyrotactic Microorganisms, European J. Mech.-B/Fluids, 2014, vol. 46, pp. 37–45.

    Article  ADS  MathSciNet  Google Scholar 

  12. Ataei, M., Moghanlou, F.S., Noorzadeh, S., Vajdi, M., and Asl, M.S., Heat Transfer and Flow Characteristics of Hybrid Al2O3/TiO2–Water Nanofluid in a Minichannel Heat Sink, Heat Mass Transfer, 2020, vol. 56, pp. 2757–2767.

    Article  ADS  Google Scholar 

  13. Al-Shyyab, A., Darwish, F., Al-Nimr, M., and Alshaer, B., Analytical Study of Conjugated Heat Transfer of a Microchannel Fluid Flow between Two Parallel Plates, J. Eng. Therm., 2020, vol. 29, pp. 114–135.

    Article  Google Scholar 

  14. Maiti, D. and Mandal, H., Unsteady Slip Flow past an Infinite Vertical Plate with Ramped Plate Temperature and Concentration in the Presence of Thermal Radiation and Buoyancy, J. Eng. Therm., 2019, vol. 28, pp. 431–452.

    Article  Google Scholar 

  15. Bachok, N., Ishak, A., and Pop, I., Boundary Layer Flow over a Moving Surface in a Nanofluid with Suction or Injection, Acta Mechanica Sinica, 2012, vol. 28, pp. 34–40.

    Article  ADS  MathSciNet  Google Scholar 

  16. Rana, M., Ali, Y., Shoaib, M., and Numan, M., Magnetohydrodynamic Three-Dimensional Couette Flow of a Second-Grade Fluid with Sinusoidal Injection/Suction, J. Eng. Therm., 2019, vol. 28, pp. 138–162.

    Article  Google Scholar 

  17. Makinde, O.D. and Chinyoka, T., Numerical Investigation of Buoyancy Effects on Hydromagnetic Unsteady Flow through a Porous Channel with Suction/Injection, J. Mech. Sci. Technol., 2013, vol. 27, pp. 1557–1568.

    Article  Google Scholar 

  18. Olanrewaju, P.O. and Makinde, O.D., Effects of Thermal Diffusion and Diffusion Thermo on Chemically Reacting MHD Boundary Layer Flow of Heat and Mass Transfer past a Moving Vertical Plate with Suction/Injection, Arabian J. Sci. Engin., 2011, vol. 36, pp. 1607–1619.

    Article  Google Scholar 

  19. Makinde, O. and Chinyoka, T., Analysis of Unsteady Flow of a Variable Viscosity Reactive Fluid in a Slit with Wall Suction or Injection, J. Petrol. Sci. Engin., 2012, vol. 94, pp. 1–11.

    Article  Google Scholar 

  20. Chamkha, A.J., Takhar, H.S., and Nath, G., Mixed Convection Flow over a Vertical Plate with Localized Heating (Cooling), Magnetic Field and Suction (Injection), Heat Mass Transfer, 2004, vol. 40, pp. 835–841.

    Article  ADS  Google Scholar 

  21. Hashemabadi, S., Etemad, S.G., Naranji, M.G., and Thibault, J., Mathematical Modeling of Laminar Forced Convection of Simplifieed PHSN-THIEN-TANNER (SPTT) Fluid between Moving Parallel Plates, Int. Comm. Heat Mass Transfer, 2003, vol. 30, pp. 197–205.

    Article  Google Scholar 

  22. Davaa, G., Shigechi, T., and Momoki, S., Effect of Viscous Dissipation on Fully Developed Heat Transfer of Non-Newtonian Fluids in Plane Laminar Poiseuille–Couette Flow, Int. Comm. Heat Mass Transfer, 2004, vol. 31, pp. 663–672.

    Article  Google Scholar 

  23. Kyritsi-Yiallourou, S. and Georgiou, G.C., Newtonian Poiseuille Flow in Ducts of Annular-Sector Cross-Sections with Navier Slip, European J. Mech.-B/Fluids, 2018, vol. 72, pp. 87–102.

    Article  ADS  MathSciNet  Google Scholar 

  24. Mokarizadeh, H., Asgharian, M., and Raisi, A., Heat Transfer in Couette–Poiseuille Flow between Parallel Plates of the Giesekus Viscoelastic Fluid, J. Non-Newtonian Fluid Mech., 2013, vol. 196, pp. 95–101.

    Article  Google Scholar 

  25. Sheela-Francisca, J., Tso, C.P., Hung, Y.M., and Rilling, D., Heat Transfer on Asymmetric Thermal Viscous Dissipative Couette–Poiseuille Flow of Pseudo-Plastic Fluids, J. Non-Newtonian Fluid Mech., 2012, vol. 169, pp. 42–53.

    Article  Google Scholar 

  26. Tlili, I., Hamadneh, N.N., Khan, W.A., and Atawneh, S., Thermodynamic Analysis of MHD Couette–Poiseuille Flow of Water-Based Nanofluids in a Rotating Channel with Radiation and Hall Effects, J. Thermal An. Calorimetry, 2018, vol. 132, pp. 1899–1912.

    Article  Google Scholar 

  27. Bruin, S., Temperature Distributions in Couette Flow with and without Additional Pressure, Int. J. Heat Mass Transfer, 1972, vol. 15, pp. 341–349.

    Article  Google Scholar 

  28. Coelho, P.M. and Poole, R.J., Heat Transfer of Power-Law Fluids in Plane Couette–Poiseuille Flows with Viscous Dissipation, Heat Transfer Engin., 2020, vol. 41, pp. 1189–1207.

    Article  ADS  Google Scholar 

  29. Kar, M., Sahoo, S., and Dash, G., Effect of Hall Current and Chemical Reaction on MHD Flow along an Accelerated Porous Flat Plate with Internal Heat Absorption/Generation, J. Engin. Phys. Thermophys., 2014, vol. 87, pp. 624–634.

    Article  ADS  Google Scholar 

  30. Ibrahim, S., Kumar, P., Lorenzini, G., and Lorenzini, E., Influence of Joule Heating and Heat Source on Radiative MHD Flow over a Stretching Porous Sheet with Power-Law Heat Flux, J. Eng. Therm., 2019, vol. 28, pp. 332–344.

    Article  Google Scholar 

  31. Valitabar, M., Rahimi, M., and Azimi, N., Experimental Investigation on Forced Convection Heat Transfer of Ferrofluid between Two-Parallel Plates, Heat Mass Transfer, 2020, vol. 56, pp. 53–64.

    Article  ADS  Google Scholar 

  32. Ghaneifar, M., Raisi, A., Ali, H.M., and Talebizadehsardari, P., Mixed Convection Heat Transfer of Al2O3 Nanofluid in a Horizontal Channel Subjected with Two Heat Sources, J. Thermal An. Calorimetry, 2021, vol. 143, pp. 2761–2774.

    Article  Google Scholar 

  33. Makinde, O.D., Similarity Solution for Natural Convection from a Moving Vertical Plate with Internal Heat Generation and a Convective Boundary Condition, Thermal Sci., 2011, vol. 15, pp. 137–143.

    Article  Google Scholar 

  34. Malvandi, A., Moshizi, S., and Ganji, D., Nanofluids Flow in Microchannels in Presence of Heat Source/Sink and Asymmetric Heating, J. Thermophys. Heat Transfer, 2016, vol. 30, pp. 111–119.

    Article  Google Scholar 

  35. Adesanya, S.O. and Makinde, O.D., Thermodynamic Analysis for a Third Grade Fluid through a Vertical Channel with Internal Heat Generation, J. Hydrodyn., 2015, vol. 27, pp. 264–272.

    Article  ADS  Google Scholar 

  36. Singh, A.K., Kumar, R., Singh, U., Singh, N., and Singh, A.K., Unsteady Hydromagnetic Convective Flow in a Vertical Channel Using Darcy–Brinkman–Forchheimer Extended Model with Heat Generation/Absorption: Analysis with Asymmetric Heating/Cooling of the Channel Walls, Int. J. Heat Mass Transfer, 2011, vol. 54, pp. 5633–5642.

    Article  Google Scholar 

  37. Upreti, H., Pandey, A.K., and Kumar, M., MHD Flow of Ag-Water Nanofluid over a Flat Porous Plate with Viscous-Ohmic Dissipation, Suction/Injection and Heat Generation/Absorption, Alexandria Engin. J., 2018, vol. 57, pp. 1839–1847.

    Article  Google Scholar 

  38. Ranjit, N. and Shit, G., Entropy Generation on Electromagnetohydrodynamic Flow through a Porous Asymmetric Micro-Channel, European J. Mech.-B/Fluids, 2019, vol. 77, pp. 135–147.

    Article  ADS  MathSciNet  Google Scholar 

  39. Monaledi, R.L. and Makinde, O.D., Entropy Generation Analysis in a Microchannel Poiseuille Flows of Nanofluid with Nanoparticles Injection and Variable Properties, J. Thermal An. Calorimetry, 2020, pp. 1–11.

  40. Ibáñez, G., López, A., López, I., Pantoja, J., Moreira, J., and Lastres, O., Optimization of MHD Nanofluid Flow in a Vertical Microchannel with a Porous Medium, Nonlinear Radiation Heat Flux, Slip Flow and Convective-Radiative Boundary Conditions, J. Thermal An. Calorimetry, 2019, vol. 135, pp. 3401–3420.

    Article  Google Scholar 

  41. Srinivasacharya, D. and Bindu, K.H., Entropy Generation in a Micropolar Fluid Flow through an Inclined Channel with Slip and Convective Boundary Conditions, Energy, 2015, vol. 91, pp. 72–83.

    Article  Google Scholar 

  42. Ibáñez, G., Entropy Generation in MHD Porous Channel with Hydrodynamic Slip and Convective Boundary Conditions, Int. J. Heat Mass Transfer, 2015, vol. 80, pp. 274–280.

    Article  Google Scholar 

  43. Ibáñez, G., López, A., Pantoja, J., and Moreira, J., Entropy Generation Analysis of a Nanofluid Flow in MHD Porous Microchannel with Hydrodynamic Slip and Thermal Radiation, Int. J. Heat Mass Transfer, 2016, vol. 100, pp. 89–97.

    Article  Google Scholar 

  44. Lopez, A., Ibanez, G., Pantoja, J., Moreira, J., and Lastres, O., Entropy Generation Analysis of MHD Nanofluid Flow in a Porous Vertical Microchannel with Nonlinear Thermal Radiation, Slip Flow and Convective-Radiative Boundary Conditions, Int. J. Heat Mass Transfer, 2017, vol. 107, pp. 982–994.

    Article  Google Scholar 

  45. Makinde, O., Khan, Z., Ahmad, R., Haq, R.U., and Khan, W., Unsteady MHD Flow in a Porous Channel with Thermal Radiation and Heat Source/Sink, Int. J. Appl. Comput. Math., 2019, vol. 5, p. 59.

    Article  MathSciNet  Google Scholar 

  46. Mondal, P., Maiti, D.K., Shit, G.C., and Ibáñez, G., Heat Transfer and Entropy Generation in a MHD Couette-Poiseuille Flow Through a Microchannel with Slip, Suction-Injection and Radiation, J. Thermal An. Calorimetry, 2021.

  47. Navier, C., Sur les Lois dee Mouvement des Fluids, Mem Acad. R. Sci. Inst. Fr., 1827, vol. 6, pp. 389–440.

    Google Scholar 

  48. Lin, T., Hawks, K., and Leidenfrost, W., Analysis of Viscous Dissipation Effect on Thermal Entrance Heat Transfer in Laminar Pipe Flows with Convective Boundary Conditions, Wärmeund Stoffübertragung, 1983, vol. 17, pp. 97–105.

    Article  ADS  Google Scholar 

  49. Pak, B.C. and Cho, Y.I., Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles, Exp. Heat Transfer, Int. J., 1998, vol. 11, pp. 151–170.

    Article  ADS  Google Scholar 

  50. Xuan, Y. and Roetzel, W., Conceptions for Heat Transfer Correlation of Nanofluids, Int. J. Heat Mass Transfer, 2000, vol. 43, pp. 3701–3707.

    Article  Google Scholar 

  51. Vajjha, R.S. and Das, D.K., Experimental Determination of Thermal Conductivity of Three Nanofluids and Development of New Correlations, Int. J. Heat Mass Transfer, 2009, vol. 52, pp. 4675–4682.

    Article  Google Scholar 

  52. Koo, J. and Kleinstreuer, C., A New Thermal Conductivity Model for Nanofluids, J. Nanoparticle Research, 2004, vol. 6, pp. 577–588.

    Article  ADS  Google Scholar 

  53. Kim, D., Kwon, Y., Cho, Y., Li, C., Cheong, S., Hwang, Y., Lee, J., Hong, D., and Moon, S., Convective Heat Transfer Characteristics of Nanofluids under Laminar and Turbulent Flow Conditions, Current Appl. Phys., 2009, vol. 9, pp. e119–e123.

    Article  ADS  Google Scholar 

  54. Ebrahimnia-Bajestan, E., Niazmand, H., Duangthongsuk, W., and Wongwises, S., Numerical Investigation of Effective Parameters in Convective Heat Transfer of Nanofluids Flowing under a Laminar Flow Regime, Int. J. Heat Mass Transfer, 2011, vol. 54, pp. 4376–4388.

    Article  Google Scholar 

  55. Masoumi, N., Sohrabi, N., and Behzadmehr, A., A New Model for Calculating the Effective Viscosity of Nanofluids, J. Phys. D: Appl. Phys., 2009, vol. 42, p. 055501.

    Article  ADS  Google Scholar 

  56. Etminan-Farooji, V., Ebrahimnia-Bajestan, E., Niazmand, H., and Wongwises, S., Unconfined Laminar Nanofluid Flow and Heat Transfer around a Square Cylinder, Int. J. Heat Mass Transfer, 2012, vol. 55, pp. 1475–1485.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Maiti.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, P., Maiti, D.K. Base Fluids, Its Temperature and Heat Source on MHD Couette–Poiseuille Nanofluid Flow through Slippy Porous Microchannel with Convective-Radiative Condition: Entropy Analysis. J. Engin. Thermophys. 32, 835–857 (2023). https://doi.org/10.1134/S181023282304015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S181023282304015X

Navigation