Skip to main content
Log in

Experimental Investigations of Non-Stationary Heat and Mass Transfer with Reversible Air Flow through Fixed Layers of Absorbent and Heat-Accumulating Packing

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The paper presents the results of an experimental study of non-stationary heat and mass transfer in reversible modes of air flow through fixed layers of an adsorbent and a heat-accumulating packing. Gravel screening with polydisperse composition and average particle size of 12.6 mm was used as a heat-accumulating packing, and composite adsorbent IK-011-1 granules of cylindrical shape with diameter of 2.8 mm and length of 5 mm to 7 mm were used as a sorbent. The flow rate of the supplied air was 253 m3/h. The studies showed that the heat recovery rate varied in the range from 0.80 to 0.91, and the moisture recovery rate ranged from 0.60 to 0.84. With such rates, a regenerative heat-and-mass transfer setup becomes a promising device for utilizing heat and moisture in a ventilation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Frank-Kamenetsky, D.A., Diffusion and Heat Transfer in Chemical Kinetics, 1987.

  2. Critoph, R.E., Performance Estimation of Convective Thermal Wave Adsorption Cycles, Appl. Thermal Engin., 1996, vol. 16, pp. 429–437; https://doi.org/10.1016/1359-4311(95)00026-7.

    Article  Google Scholar 

  3. Bunimovich, G.A., Vernikovskaya, N.V., Strots, V.O., Balzhinimaev, B.S., and Matros, Y.S., SO2 Oxidation in a Reverse-Flow Reactor: Influence of a Vanadium Catalyst Dynamic Properties, Chem. Engin. Sci., 1995, vol. 50, pp. 565–580; https://doi.org/10.1016/0009-2509(94)00443-U.

    Article  ADS  Google Scholar 

  4. Aristov, Y.I., Mezentsev, I.V., and Mukhin, V.A., Investigation of the Moisture Exchange in a Stationary Adsorbent Layer through Which Air Is Passed, J. Eng. Phys. Thermophys., 2005, vol. 78, pp. 248–255; https://doi.org/10.1007/s10891-005-0055-0.

    Article  ADS  Google Scholar 

  5. Mezentsev, I.V., Vernikovskaya, N.V., Aristov, Y.I., and Mukhin, V.A., Experimental Study and Mathematical Modelling of Heat Transfer Processes in Heat Accumulating Media, Thermophys. Aeromech., 2006, vol. 13, pp. 403–410; https://doi.org/10.1134/S0869864306030103.

    Article  ADS  Google Scholar 

  6. Aristov, Y.A., Mezentsev, I.V., and Mukhin, V.A., A New Approach to Heat and Moisture Regeneration in the Ventilation System of Rooms. I. Laboratory Prototype of the Regenerator, J. Eng. Phys. Thermophys., 2006, vol. 79, pp. 569–576; https://doi.org/10.1007/s10891-006-0137-7.

    Article  ADS  Google Scholar 

  7. Nizovtsev, M.I., Borodulin, V.Y., and Letushko, V.N., Regenerative Heat Exchanger with a Periodic Change in the Airflow Direction for Room Ventilation, Thermophys. Aeromech., 2015, vol. 22, pp. 755–765; https://doi.org/10.1134/S0869864315060116.

    Article  ADS  Google Scholar 

  8. Nizovtsev, M.I., Borodulin, V.Y., Letushko, V.N., and Zakharov, A.A., Analysis of the Efficiency of Air-to-Air Heat Exchanger with a Periodic Change in the Flow Direction, Appl. Therm. Eng., 2016, vol. 93, pp. 113–121; https://doi.org/10.1016/j.applthermaleng.2015.09.029.

    Article  Google Scholar 

  9. Nizovtsev, M.I., Borodulin, V.Y., and Letushko, V.N., Influence of Condensation on the Efficiency of Regenerative Heat Exchanger for Ventilation, Appl. Therm. Eng., 2017, vol. 111, pp. 997–1007; https://doi.org/ 10.1016/j.applthermaleng.2016.10.016.

    Article  Google Scholar 

  10. Adamski, M., Heat Transfer Correlations and NTU Number for the Longitudinal Flow Spiral Recuperators, Appl. Therm. Eng., 2009, vol. 29, pp. 591–596; https://doi.org/10.1016/ j.applthermaleng.2008.03.029.

    Article  Google Scholar 

  11. Liu, J., Li, W., Liu, J., and Wang, B., Efficiency of Energy Recovery Ventilator with Various Weathers and Its Energy Saving Performance in a Residential Apartment, Energy Build., 2010, vol. 42, pp. 43–49; https://doi.org/10.1016/j.enbuild.2009.07.009.

    Article  Google Scholar 

  12. Amin, M.R. and Lindstrom, J.D., Transient Thermal Simulation of Counter Flow Compact Recuperator Partition Plates, Appl. Therm. Eng., 2012, vol. 48, pp. 11–17; https://doi.org/10.1016/ j.applthermaleng.2012.04.030.

    Article  Google Scholar 

  13. Gendebien, S., Bertagnolio, S., and Lemort V., Investigation on a Ventilation Heat Recovery Exchanger: Modeling and Experimental Validation in Dry and Partially Wet Conditions, Energy Build., 2013. vol. 62. pp. 176–189; https://doi.org/10.1016/j.enbuild.2013.02.025.

    Article  Google Scholar 

  14. Mota, F., Ravagnani, M., and Carvalho, E., Optimal Design of Plate Heat Exchangers, Appl. Therm. Eng., 2014, vol. 63, pp. 33–39; https://doi.org/10.1016/j.applthermaleng.2013.09.046.

    Article  Google Scholar 

  15. ASHRAE HandbookHVAC Systems and Equipment. American Society of Heating, Refrigeration and Air Conditioning Engineers, ASHRAE, 2008.

  16. Incropera, F. and DeWitt, D., Introduction to Heat Transfer, 4th ed., New York: Wiley, 2002.

    Google Scholar 

  17. Howell, R.H., Sauer, H.J., and Coad, W.J., Principles of Heating Ventilating and Air Conditioning, 1998.

  18. Joen, C., Park, Y., Wang, Q., Sommers, A., Han, X., and Jacobi, A., A Review on Polymer Heat Exchangers for HVAC&R Applications, Int. J. Refrig., 2009, vol. 32, pp. 763–779; https://doi.org/10.1016/ j.ijrefrig.2008.11.008.

    Article  Google Scholar 

  19. Fernández-Seara, J., Diz, R., Uhia, F., Dopazo, A., and Ferro, J., Experimental Analysis of an Air-to-Air Heat Recovery Unit for Balanced Ventilation Systems in Residential Buildings, Energy Convers. Manag., 2011, vol. 52, pp. 635–640; https://doi.org/10.1016/j.enconman.2010.07.040.

    Article  Google Scholar 

  20. Alonso, M., Liu, P., Mathisen, H., Ge, G., and Simonson, C., Review of Heat/Energy Recovery Exchangers for Use in Zebs in Cold Climate Countries, Building Environ., 2015, vol. 84, pp. 228–237; https://doi.org/10.1016/j.buildenv.2014.11.014.

    Article  Google Scholar 

  21. Alonso, M., Mathisen, H., Aarnes, S., Ge, G., and Liu, P., Performance of a Lab-Scale Membrane-Based Energy Exchanger, Appl. Therm. Eng., 2017, vol. 111, pp. 1244–1254; https://doi.org/10.1016/ j.applthermaleng.2015.11.119.

    Article  Google Scholar 

  22. Dallaire, J., Gosselin, L., and Silva, A., Conceptual Optimization of a Rotary Heat Exchanger with a Porous Core, Int. J. Therm. Sci., 2010, vol. 49, pp. 454–462; https://doi.org/10.1016/ j.ijthermalsci.2009.07.027.

    Article  Google Scholar 

  23. Yamaguchi, S. and Saito, K., Numerical and Experimental Performance Analysis of Rotary Desiccant Wheels, Int. J. Heat Mass Transfer, 2013, vol. 60, pp. 51–60; https://doi.org/10.1016/ j.ijheatmasstransfer.2012.12.036.

    Article  Google Scholar 

  24. Ruan, W., Qu, M., and Horton, W., Modeling Analysis of an Enthalpy Recovery Wheel with Purge Air, Int. J. Heat Mass Transfer, 2012, vol. 55, pp. 4665–4672; https://doi.org/10.1016/ j.ijheatmasstransfer.2012.04.025.

    Article  Google Scholar 

  25. Finocchiaro, P., Beccali, M., and Nocke, B., Advanced Solar Assisted Desiccant and Evaporative Cooling System Equipped with Wet Heat Exchangers, Solar Energy, 2012, vol. 86, pp. 608–618; https://doi.org/ 10.1016/j.solener.2011.11.003.

    Article  ADS  Google Scholar 

  26. Ge, T., Dai, Y., and Wang, R., Review on Solar Powered Rotary Desiccant Wheel Cooling System, Renew. Sust. Energy Rev., 2014, vol. 39, pp. 476–497; https://doi.org/10.1016/j.rser.2014.07.121.

    Article  Google Scholar 

  27. Tu, R., Liu, X.-H., and Jiang, Y., Lowering the Regeneration Temperature of a Rotary Wheel Dehumidification System Using Exergy Analysis, Energy Convers. Manag., 2015, vol. 89, pp. 162–174; https://doi.org/10.1016/j.enconman.2014.09.068.

    Article  Google Scholar 

  28. Li, Z. and Tao, R., Performance Enhancement of Desiccant Wheels by Adsorption/Desorption in Stages with Type-S Isotherm Desiccants, Appl. Therm. Eng., 2023, vol. 224, p. 120068; https://doi.org/10.1016/ j.applthermaleng.2023.120068.

    Article  Google Scholar 

  29. Abdelgaied, M., Saber, M., Bassuoni, M., and Khaira, A., Comparative Analysis of a New Desiccant Dehumidifier Design with a Traditional Rotary Desiccant Wheel for Air Conditioning Purpose, Appl. Therm. Eng., 2023, vol. 222, p. 119945; https://doi.org/10.1016/j.applthermaleng.2022.119945.

    Article  Google Scholar 

  30. Behede, B., Chakrabarti, S., Wankhede, U., and Thakare, H., Review on Nanoporous Inorganic Desiccant Materials in the Context of Application in Rotary Dehumidifiers, Materials Today: Proceedings, 2022, vol. 57, pp. 2174–2179; https://doi.org/10.1016/j.matpr.2021.12.227.

    Article  Google Scholar 

  31. Brancato, V., Gordeeva, L., Caprı̀, A., Grekova, A., and Frazzica, A., Experimental Comparison of Innovative Composite Sorbents for Space Heating and Domestic Hot Water Storage, Crystals, 2021, vol. 11, p. 476; https://doi.org/10.3390/cryst11050476.

    Article  Google Scholar 

  32. Aristov, Y.I. and Gordeeva, L.G., Combining the Psychrometric Chart of Humid Air with Water Adsorption Isosters: Analysis of the Ventireg Process, Energy, 2022, vol. 239, p. 122278; https://doi.org/10.1016/ j.energy.2021.122278.

    Article  Google Scholar 

  33. Gordeeva, L.G. and Aristov, Y.I., Adsorbent Coatings for Adsorption Heat Transformation: From Synthesis to Application, Energies, 2022, vol. 15, p. 7551; https://doi.org/10.3390/en15207551.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Mezentsev.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezentsev, I.V., Mezentsev, S.I., Wu, Z. et al. Experimental Investigations of Non-Stationary Heat and Mass Transfer with Reversible Air Flow through Fixed Layers of Absorbent and Heat-Accumulating Packing. J. Engin. Thermophys. 32, 807–815 (2023). https://doi.org/10.1134/S1810232823040124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232823040124

Navigation