Skip to main content
Log in

Visual Study of the Impact and Freezing Process of a Water Droplet on Carbon Fiber Plates

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The present study investigates the effects of droplet impact height, tilt angle, and surface temperature on the impact and freezing process of water droplet on a cold surface by using a Motionpro high-speed camera and a DSA-30 droplet surface analyzer. The temperature of the plate was changed from an ambient temperature of 24.0°C to \(-10.0^{\circ}\)C, while three impact heights (\(H\) = 100, 150 and 200 mm) were set. The data indicated that increasing impact height led to increase in the maximum spreading diameter and maximum endpoint displacement, but its effect on droplet spreading time was not significant. With decreasing the surface temperature, the rate of change in the droplet diameter was smoother and the droplet freezing time reduced. Moreover, at low Weber number (\(We < 200\)), the impact height has less effect on the freezing time of the droplet. Besides, compared with the horizontal plate, the droplet freezing time on plate tilted at 30° was higher for the same impact height.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

REFERENCES

  1. Potapczuk, M.G., Aircraft Icing Research at NASA Glenn Research Center, J. Aerospace. Eng., 2013, vol. 26, no. 2, pp. 260–276.

    Article  Google Scholar 

  2. Huang, Y.F., Jiang, X.L., and Virk, M.S., Ice Accretion Study of FXBW4-220 Transmission Line Composite Insulators and Anti-Icing Geometry Optimization, Electr. Power Syst. Res., 2021, vol. 194, p. 107089.

    Article  Google Scholar 

  3. Dalili, N., Edrisy, A., and Carriveau, R., A Review of Surface Engineering Issues Critical to Wind Turbine Performance, Renew. Sust. Energy Rev., 2007, vol. 13. no. 2, pp. 428–438.

    Article  Google Scholar 

  4. Worthington, A.M., A Study of Splashes, Longmans, Green and Company, 1908.

    Google Scholar 

  5. Yao, Y.N., Li, C., Tao, Z.X., Yang, R., and Zhang, H., Experimental and Numerical Study on the Impact and Freezing Process of a Water Droplet on a Cold Surface, Appl. Therm. Eng., 2018, vol. 137, pp. 83–92.

    Article  Google Scholar 

  6. Wang, L.P., Kong, W.L., Wang, F.X., and Liu, H., Effect of Nucleation Time on Freezing Morphology and Type of a Water Droplet Impacting onto Cold Substrate, Int. J. Heat Mass Transfer, 2019, vol. 130, pp. 831–842.

    Article  Google Scholar 

  7. Roisman, I.V., Opfer, L., Tropea, C., Raessi, M., Mostaghimi, J., and Chandra, S., Drop Impact onto a Dry Surface: Role of the Dynamic Contact Angle, Colloids Surf., A, 2008, vol. 322, no. 1, pp. 183–191.

    Article  Google Scholar 

  8. Zhang, C. and Liu, H., Effect of Drop Size on the Impact Thermodynamics for Supercooled Large Droplet in Aircraft Icing, Phys. Fluids, 2016, vol. 28, no. 6, p. 062107.

    Article  ADS  Google Scholar 

  9. Yang, G.M., Guo, K.H., and Li, N., Freezing Mechanism of Supercooled Water Droplet Impinging on Metal Surfaces, Int. J. Refrig., 2011, vol. 34, no. 8, pp. 2007–2017.

    Article  Google Scholar 

  10. Zhang, H,H., Jin, Z.Y., Jiao, M.S., and Yang, Z.G., Experimental Investigation of the Impact and Freezing Processes of a Water Droplet on Different Cold Concave Surfaces, Int. J. Therm. Sci., 2018, vol. 132, pp. 498–508.

    Article  Google Scholar 

  11. Hu, M., Wang, F., Tao, Q., Chen, L., Rubinstein, S.M., and Deng, D.S., Frozen Patterns of Impacted Droplets: From Conical Tips to Toroidal Shapes, Phys. Rev. Fluids, 2020, vol. 5, no. 8, p. 081601.

    Article  ADS  Google Scholar 

  12. Mehdizadeh, N.Z., Chandra, S., and Mostaghimi, J., Splashing of a Small Droplet Impinging on a Solid Surface at High Velocity, ASME Int. Mech. Eng. Cong. Expo., 2000, vol. 3, pp. 397–405.

  13. Werner, S.R.L., Jones, J.R., Paterson, A.H.J., Archer, R.H., and Pearce, D.L., Droplet Impact and Spreading: Droplet Formulation Effects, Chem. Eng. Sci., 2006, vol. 62, no. 9, pp. 2336–2345.

    Article  ADS  Google Scholar 

  14. Xu, Q., Li, Z.Y., Wang, J., and Wang, R.F., Characteristics of Single Droplet Impact on Cold Plate Surfaces, Drying Technol., 2012, vol. 30, no. 15, pp. 1756–1762.

    Article  Google Scholar 

  15. Kumar, A., Gu, S., and Kamnis, S., Simulation of Impact of a Hollow Droplet on a Flat Surface, Appl. Phys. A, 2012, vol. 109, no. 1, pp. 101–109.

    Article  Google Scholar 

  16. Moghtadernejad, S., Lee, C., and Jadidi, M., An Introduction of Droplet Impact Dynamics to Engineering Students, Fluids, 2020, vol. 5, no. 3, p. 107.

    Article  ADS  Google Scholar 

  17. Esmeryan, K.D., From Extremely Water-Repellent Coatings to Passive Icing Protection—Principles, Limitations and Innovative Application Aspects, Coatings, 2020, vol. 10, no. 1, p. 66.

    Article  Google Scholar 

  18. Bai, Y.X., Zhang, H.P., Shao, Y.Y., Zhang, H., and Zhu, J., Recent Progresses of Superhydrophobic Coatings in Different Application Fields: An Overview, Coatings, 2021, vol. 11, no. 2, p. 116.

    Article  Google Scholar 

  19. Li, Wen., Zhan, Y.L., and Yu, S.R., Applications of Superhydrophobic Coatings in Anti-Icing: Theory, Mechanisms, Impact Factors, Challenges and Perspectives, Prog. Org. Coat., 2021, vol. 152, p. 106117.

    Article  Google Scholar 

  20. Zhang, Q.L., He, M., Chen, J., Wang, J.J., Song, Y.L., and Jiang, L., Anti-Icing Surfaces Based on Enhanced Self-Propelled Jumping of Condensed Water Microdroplets, Chem. Commun., 2013, vol. 49, no. 40, pp. 4516–4518.

    Article  Google Scholar 

  21. Kreder, M.J., Alvarenga, J., Kim, P., and Aizenberg, J., Design of Anti-Icing Surfaces: Smooth, Textured or Slippery?, Nat. Rev. Mater., 2016, vol. 1, no. 1, pp. 546–551.

    Article  Google Scholar 

  22. Khojasteh, D., Kazerooni, M., Salarian, S., and Kamali, R., Droplet Impact on Superhydrophobic Surfaces: A Review of Recent Developments, J. Ind. Eng. Chem., 2016, vol. 42, pp. 1–14.

    Article  Google Scholar 

  23. Chu, F.Q., Wu, X.M., and Wang, L.L., Dynamic Melting of Freezing Droplets on Ultraslippery Superhydrophobic Surfaces, ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 9, pp. 8420–8425.

    Article  Google Scholar 

  24. Weisensee, P.B., Ma, J.C., Shin, Y.H., Tian, J.J., Chang, Y.J., King, W., and Miljkovic, N., Droplet Impact on Vibrating Superhydrophobic Surfaces, Phys. Rev. Fluids, 2017, vol. 2, no. 10, p. 103601.

    Article  ADS  Google Scholar 

  25. Li, H.Z., Fang, W., Li, Y.N., Yang, Q., Li, M.Z., Li, Q.Y., Feng, X.Q., and Song, Y.l., Spontaneous Droplets Gyrating via Asymmetric Self-Splitting on Heterogeneous Surfaces, Nat. Commun., 2019, vol. 10, no. 1, p. 950.

    Article  ADS  Google Scholar 

  26. Jiang, Y.H. and Choi, C.H., Droplet Retention on Superhydrophobic Surfaces: A Critical Review, Adv. Mater. Interfaces, 2020, vol. 8, no. 2, p. 2001205.

  27. Qian, C.L., Li, Q., and Chen, X.M., Droplet Impact on the Cold Elastic Superhydrophobic Membrane with Low Ice Adhesion, Coatings, 2020, vol. 10, no. 10, p. 964.

    Article  Google Scholar 

  28. Yang, C.J., Cao, W.R., and Yang, Z., Study on Dynamic Behavior of Water Droplet Impacting on Super-Hydrophobic Surface with Micro-Pillar Structures by VOF Method, Colloids Surf., A, 2021, vol. 630, p. 127634.

    Article  Google Scholar 

  29. Hu, Z.F., Chu, F.Q., and Wu, X.M., Double-Peak Characteristic of Droplet Impact Force on Superhydrophobic Surfaces, Extreme. Mech. Lett., 2022, vol. 52, p. 101665.

    Article  Google Scholar 

  30. Hou, J.Q., Gong, J.Y., Wu, X., and Huang, Q.W., Numerical Study on Impacting-Freezing Process of the Droplet on a Lateral Moving Cold Superhydrophobic Surface, Int. J. Heat Mass Transfer, 2022, vol. 183, p. 122044.

    Article  Google Scholar 

  31. Lu, Z.L., Lu, F., Cao, J.W., and Li, D.C., Manufacturing Properties of Turbine Blades of Carbon Fiber-Reinforced SiC Composite Based on Stereolithography, Mater. Manuf. Process, 2014, vol. 29, no. 2, pp. 201–209.

    Article  Google Scholar 

  32. Li, C.L., Cui, X., Wu, Z.H., Zeng, J.C., and Su, L.X., A Method of Eliminating Ice on Wind Turbine Blade by Using Carbon Fiber Composites, Adv. Mater. Interfaces, 2013, vol. 2586, pp. 1322–1325.

    Article  Google Scholar 

  33. Ahmad, H., Markina, A.A., Porotnikov, M.V., and Ahmad, F., A Review of Carbon Fiber Materials in Automotive Industry, IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 971, no. 3, p. 032011.

  34. Rioboo, R., Marengo, M., and Tropea, C., Time Evolution of Liquid Drop Impact onto Solid, Dry Surfaces, Exp. Fluids, 2002, vol. 33, no. 1, pp. 112–124.

    Article  ADS  Google Scholar 

  35. Fuchs, N.A., The Mechanics of Aerosols, London: Pergamon Press., 1964.

    Google Scholar 

  36. Kawanami, T., Yamada, M., Fukusako, S., and Kawai, H., Solidification Characteristics of a Droplet on a Horizontal Cooled Wall, Heat Transfer—Asian Res., 1997, vol. 26, no. 7, pp. 469–483.

    Article  Google Scholar 

  37. Carrión, P., Tarjuelo, J., and Montero, J., SIRIAS: A Simulation Model for Sprinkler Irrigation: I. Description of Model, Irrigation Sci., 2001, vol. 20, no. 2, pp. 73–84.

    Article  Google Scholar 

  38. Lorenzini, G., Simplified Modelling of Sprinkler Droplet Dynamics, Biosyst. Eng., 2003, vol. 87, no. 1, pp. 1–11.

    Article  Google Scholar 

  39. Liu, Y.Z., Wang, T.B., Song, Z.Y., and Chen, M., Spreading and Freezing of Supercooled Water Droplets Impacting an Ice Surface, Appl. Surf. Sci., 2022, vol. 583, p. 152374.

    Article  Google Scholar 

  40. Chang, S.N., Song, H., and Wu, K., Experimental Investigation on Impact Dynamics and Freezing Performance of Water Droplet on Horizontal Cold Surface, Sust. Energy Technol. Assess., 2021, vol. 45, p. 101128.

    Article  Google Scholar 

  41. Tian, J.J., Gu, X.D., Lv, S.N., Zhang, Z., Mehendale, S., and Li, X.B., Visual Study of the Freezing Process of a Water Droplet on a Horizontal Copper Plate, Heat Transfer Res., 2022, vol. 53, no. 7, pp. 77–92.

    Article  Google Scholar 

  42. Zhang, X., Liu, X., Min, J.C., and Wu, X.M., Shape Variation and Unique Tip Formation of a Sessile Water Droplet during Freezing, Appl. Therm. Eng., 2018, vol. 147, pp. 927–934.

    Article  Google Scholar 

  43. Jin, Z.Y., Sui, D.Y., and Yang, Z.G., The Impact, Freezing, and Melting Processes of a Water Droplet on an Inclined Cold Surface, Int. J. Heat Mass Transfer, 2015, vol. 90, pp. 439–453.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Zhang.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J.J., Wang, H.Y., Mehendale, S. et al. Visual Study of the Impact and Freezing Process of a Water Droplet on Carbon Fiber Plates. J. Engin. Thermophys. 32, 788–806 (2023). https://doi.org/10.1134/S1810232823040112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232823040112

Navigation