Skip to main content
Log in

Saturated Pool Boiling Heat Transfer of R-141b on Al2O3 Nano-Structured Surfaces Fabricated by Dip-Coating Method

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

In pool boiling applications, appropriate surface properties of the heating surface are crucial for improving the heat transfer. In this study, two different Al2O3 nano-structured surfaces were fabricated using dip-coating method by controlling coating thickness, and adopted to conduct pool boiling experiments with R-141b. Prepared Al2O3 nano-structured surfaces were characterized by scanning electron microscopy (SEM), elemental dispersive spectroscopy (EDS), ellipsometer, contact angle meter, and 2D profilometer to investigate the surface morphology, elemental composition, thickness, angle of contact, and surface roughness, respectively. Based on the surface characterization and boiling curves, the effects of coating thickness (300 nm and 400 nm) on the pool boiling heat transfer were examined. The heat transfer coefficient (HTC) of Al2O3 nano-structured surface (S2) was the highest, followed by those of Al2O3nano-structured surface (S1), and plain copper surface. The outstanding heat transfer performance of Al2O3 nano-structured surfaces is mainly associated with enhanced surface wettability and increased active nucleation site density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. He, M., Ali, A.F., and Chen, M., Steady-State Pool Boiling Heat Transfer Experimental Studies of Horizontally-Placed Tubes, Int. J. Heat Mass Transfer, 2022, vol. 196, p. 123270, Nov. 2022.

    Article  Google Scholar 

  2. Katarkar, A.S., Pingale, A.D., Belgamwar, S.U., and Bhaumik, S., Experimental Study of Pool Boiling Enhancement Using a Two-Step Electrodeposited Cu–GNPs Nanocomposite Porous Surface with R-134a, J. Heat Transfer, 2021, vol. 143, no. 12, p. 121601.

    Article  Google Scholar 

  3. Katarkar, A.S., Pingale, A.D., Belgamwar, S.U., and Bhaumik, S., Effect of GNPs Concentration on the Pool Boiling Performance of R-134a on Cu-GNPs Nanocomposite Coatings Prepared by a Two-Step Electrodeposition Method, Int. J. Thermophys., 2021, vol. 42, no. 8, p. 124.

    Article  ADS  Google Scholar 

  4. Sun, Y., Tang, Y., Zhang, S., Yuan, W., and Tang, H., A Review on Fabrication and Pool Boiling Enhancement of Three-Dimensional Complex Structures, Renew. Sustain. Energy Rev., 2022, vol. 162, p. 112437.

    Article  Google Scholar 

  5. Katarkar, A.S., Pingale, A.D., Belgamwar, S.U., and Bhaumik, S., Fabrication of Cu@G Composite Coatings and Their Pool Boiling Performance with R-134a And R-1234yf, Adv. Mater. Process. Technol., 2022, vol. 8, no. sup4, pp. 1–13.

    Google Scholar 

  6. Majumder, B., Pingale, A.D., Katarkar, A.S., Belgamwar, S.U., and Bhaumik, S., Enhancement of Pool Boiling Heat Transfer Performance of R-134a on Microporous Al@GNPs Composite Coatings, Int. J. Thermophys., 2022, vol. 43, no. 4, pp. 1–19.

    Article  Google Scholar 

  7. Chen, Y., Fu, R., and Yan, Y., Enhanced Pool Boiling Heat Transfer on Grooved Surfaces by Wettability Modification With Nanoparticle Coatings, Int. Commun. Heat Mass Transfer, 2022, vol. 137, p. 106298.

    Article  Google Scholar 

  8. Jiang, H., Yu, X., Xu, N., Wang, D., Yang, J., and Chu, H., Effect of T-Shaped Micro-Fins on Pool Boiling Heat Transfer Performance of Surfaces, Exp. Therm. Fluid Sci., 2022, vol. 136, p. 110663.

    Article  Google Scholar 

  9. Sharifzadeh, A.M., Moghadasi, H., Saffari, H., and Delpisheh, M., Experimental Investigation of Pool Boiling Heat Transfer Enhancement Using Electrodeposited Open-Cell Metal Foam, Int. J. Therm. Sci., 2022, vol. 176, p. 107536.

    Article  Google Scholar 

  10. Li, Q., Zhao, J., Sun, X., and Liu, B., Experimental Investigation of Pool Boiling Heat Transfer on Pillar-Structured Surfaces with Different Wettability Patterns, Appl. Therm. Eng., 2022, vol. 215, p. 118924.

    Article  Google Scholar 

  11. Pattanayak, B., Kumar, G.A., and Kothadia, H.B., Bubble Behaviour and Critical Heat Flux on Circular Tubes During Pool Boiling Process, Nucl. Eng. Des., 2022, vol. 391, p. 111741.

    Article  Google Scholar 

  12. Lee, D., Lee, N., Shim, D., Kim, B.S, and Cho, H.H., Enhancing Thermal Stability and Uniformity in Boiling Heat Transfer Using Micro-Nano Hybrid Surfaces (MNHS), Appl. Therm. Eng., 2018, vol. 130, pp. 710–721.

    Article  Google Scholar 

  13. Walunj, A. and Sathyabhama, A., Bubble Dynamics and Enhanced Heat Transfer During High-Pressure Pool Boiling on Rough Surface, 2019, J. Thermophys. Heat Transfer, vol. 33, no. 2, pp. 309–321.

    Article  Google Scholar 

  14. Qiu, D.M., Dhir, V.K., and Chao, D., Single-Bubble Dynamics During Pool Boiling under Low Gravity Conditions, J. Thermophys. Heat Transfer, 2002, vol. 16, no. 3, pp. 336–345.

    Article  Google Scholar 

  15. Walujastono, D., Okuda, T., and Kamiuto, K., Pool Film-Boiling Heat Transfer From a Horizontal Downward-Facing Surface, J. Thermophys. Heat Transfer, 2001, vol. 15, no. 3, pp. 368–372.

    Article  Google Scholar 

  16. Majumder, B., Pingale, A.D., Katarkar, A.S., Belgamwar, S.U., and Bhaumik, S., Developing Al@Gnps Composite Coating for Pool Boiling Applications by Combining Mechanical Milling, Screen Printing and Sintering Methods, Adv. Mater. Process. Technol., 2022, vol. 8, no. sup4, pp. 1–12.

    Google Scholar 

  17. Petrovic, M.M. and Stevanovic, V.D., Pool Boiling Simulation with Two-Fluid and Grid Resolved Wall Boiling Model, Int. J. Multiph. Flow, 2021, vol. 144, p. 103806.

    Article  MathSciNet  Google Scholar 

  18. Katarkar, A.S., Pingale, A.D., Belgamwar, S.U., and Bhaumik, S., Experimental Investigation of Pool Boiling Heat Transfer Performance of Refrigerant R-134a on Differently Roughened Copper Surfaces, Mater. Today Proc., 2021, vol. 47, pp. 3269–3275.

    Google Scholar 

  19. Lv, H., Bi, Q., Dong, X., Zhang, Z., and Zhu, G., Investigation on Heat Transfer of In-Tube Supercritical Water Cooling Accompanying Out-Tube Pool Boiling, Int. J. Heat Mass Transfer, 2019, vol. 136, pp. 938–949.

    Article  Google Scholar 

  20. He, M. and Lee, Y., Revisiting Heater Size Sensitive Pool Boiling Critical Heat Flux Using Neural Network Modeling: Heater Length of the Half of the Rayleigh–Taylor Instability Wavelength Maximizes CHF, Therm. Sci. Eng. Prog., 2019, vol. 14, p. 100421.

    Article  Google Scholar 

  21. Chatterjee, A., Derby, M.M., Peles, Y., and Jensen, M.K., Condensation Heat Transfer on Patterned Surfaces, Int. J. Heat Mass Transfer, 2013, vol. 66, pp. 889–897.

    Article  Google Scholar 

  22. Jaikumar, A., Gupta, A., Kandlikar, S.G., Yang, C.Y., and Su, C.Y., Scale Effects of Graphene and Graphene Oxide Coatings on Pool Boiling Enhancement Mechanisms, Int. J. Heat Mass Transfer, 2017, vol. 109, pp. 357–366.

    Article  Google Scholar 

  23. Joseph, A., Mohan, S., and Sujith, K., An Experimental Investigation on Pool Boiling Heat Transfer Enhancement Using Sol-Gel Derived Nano-Cuo Porous Coating, Exp. Therm. Fluid Sci., 2019, vol. 103, no. 1, pp. 37–50.

    Article  Google Scholar 

  24. Swain, S., Swain, A., and Kar, S.P., Influence of Different Surface Coatings on Pool Boiling Heat Transfer Enhancement: A Brief Review, Mater. Today Proc., 2020, vol. 26, pp. 1903–1907.

    Google Scholar 

  25. Ray, M., Effects of the Azimuthal Orientation on Glancing Angle Deposited Nanostructured Surfaces for Enhanced Boiling Heat Transfer, Heat Mass Transfer, 2022, pp. 1679–1694.

    Article  ADS  Google Scholar 

  26. Gupta, S.K. and Misra, R.D., Effect of Two-Step Electrodeposited Cu–TiO2 Nanocomposite Coating on Pool Boiling Heat Transfer Performance, J. Therm. An. Calorim., 2019, vol. 136, no. 4, pp. 1781–1793.

    Article  Google Scholar 

  27. Gupta, S.K. and Misra, R.D., Development of Micro/Nanostructured-Cu-TiO2-Nanocomposite Surfaces to Improve Pool Boiling Heat Transfer Performance, Heat Mass Transfer, 2020, vol. 56, no. 8, pp. 2529–2544.

    Article  ADS  Google Scholar 

  28. Gupta, S.K. and Misra, R.D., An Experimental Investigation on Pool Boiling Heat Transfer Enhancement Using Cu–Al2O3 Nano-Composite Coating, Exp. Heat Transfer, 2019, vol. 32, no. 2, pp. 133–158.

    Article  ADS  Google Scholar 

  29. Rishi, A.M., Kandlikar, S.G., and Gupta, A., Improved Wettability of Graphene Nanoplatelets (GNP)/ Copper Porous Coatings for Dramatic Improvements in Pool Boiling Heat Transfer, Int. J. Heat Mass Transfer, 2019, vol. 132, pp. 462–472.

    Article  Google Scholar 

  30. Gajghate, S.S., Barathula, S., Das, S., Saha, B., and Bhaumik, S., Experimental Investigation and Optimization of Pool Boiling Heat Transfer Enhancement over Graphene-Coated Copper Surface, J. Therm. An. Calorim., 2020, vol. 140, no. 3, pp. 1393–1411.

    Article  Google Scholar 

  31. Schultz, R.R. and Cole, R., Uncertainty Analysis of Boiling Nucleation, AIChE Symp. Ser., 1979, vol. 75, no. 189, pp. 32–38.

    Google Scholar 

  32. Webb, R.L., The Evolution of Enhanced Surface Geometries for Nucleate Boiling, Heat Transfer Eng., 1981, vol. 2, nos. 3/4, pp. 46–69.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Katarkar.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katarkar, A.S., Pingale, A.D., Satpathy, S. et al. Saturated Pool Boiling Heat Transfer of R-141b on Al2O3 Nano-Structured Surfaces Fabricated by Dip-Coating Method. J. Engin. Thermophys. 32, 776–787 (2023). https://doi.org/10.1134/S1810232823040100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1810232823040100

Navigation