Skip to main content
Log in

A Semi-Supervised Federated Learning Fault Diagnosis Method Based on Adaptive Class Prototype Points for Data Suffered by High Missing Rate

  • Regular paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

With the development of Autonomous Marine Vehicles, research on real-time health monitoring based on data from remote monitoring and shore-based control center has attracted more and more attention. However, the feature extraction capability of each local client model is limited by the size and quality of data collected by remote monitoring. For clients with zero-shot, it is necessary to design an efficient federated learning framework which allows shore-based federation center with few-shot help to strengthen the feature extraction capability of clients. In this paper, a semi-supervised federated learning strategy based on adaptive learning mechanism of prototype points is proposed to solve the problem that clients with zero-shot have difficulty in establishing reliable fault diagnosis models when the quality of client data is inhomogeneous. By designing an adaptive prototypical network learning mechanism driven by sample quality and a dynamic in-and-out mechanism for local pseudo-labeled dataset, the few-shot learning capability of federation center as well as the reliability of local client’s prototype points are enhanced to alleviate the impact of unreliable pseudo-label on semi-supervised learning. The experiment validation on the rolling bearing dataset provided by Case Western Reserve University can come to an accuracy increasement of 13.12%, which indicates that the proposed Adpro-SSFL outperforms existed semi-supervised federated learning method when data suffered by high missing rate due to the interference of external factors on the signal acquisition sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The rolling bearing dataset is available for download from the Case Western Reserve University (CWRU) Bearing Data Center Website at https://engineering.case.edu/bearingdatacenter/welcome [51]. The authors would like to thank Case Western Reserve University for providing bearing vibration data.

References

  1. Sánchez, P.J.B., Asensio, M.T., Papaelias, M., Márquez, F.P.G.: Life Cycle Assessment in Autonomous Marine Vehicles. In: Xu, J., García Márquez, F.P., Ali Hassan, M.H., Duca, G., Hajiyev, A., Altiparmak, F. (eds) Proceedings of the Fifteenth International Conference on Management Science and Engineering Management (ICMSEM). Lecture Notes on Data Engineering and Communications Technologies, vol 79. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79206-0_17

  2. Sánchez, P.J.B., Márquez, F.P.G., Papaelias, M., Marini, S., Govindaraj, S., Durand, L.: Innovative Technologies Developed for Autonomous Marine Vehicles by ENDURUNS Project. In: Karuppusamy, P., García Márquez, F.P., Nguyen, T.N. (edsUbiquitous Intelligent Systems (ICUIS). Smart Innovation, Systems and Technologies, vol 302. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-2541-2_22

  3. Wang, H., Li, Y.F.: Bioinspired membrane learnable spiking neural network for autonomous vehicle sensors fault diagnosis under open environments. Reliab. Eng. Syst. Saf. 233, 109102 (2023). https://doi.org/10.1016/j.ress.2023.109102

  4. Min, H.G., Fang, Y.K., Wu, X., Lei, X.P., Chen S.X., Teixeira, R., Zhu, B., Zhao, X.M., Xu Z.G.: A fault diagnosis framework for autonomous vehicles with sensor self-diagnosis. Expert Syst. Appl. 224, 120002 (2023). https://doi.org/10.1016/j.eswa.2023.120002

  5. Özgür Gültekin, Eyup Cinar, Kemal Özkan, Ahmet Yazıcı: Multisensory data fusion-based deep learning approach for fault diagnosis of an industrial autonomous transfer vehicle. Expert Syst. Appl. 200, 117055 (2022). https://doi.org/10.1016/j.eswa.2022.117055

  6. Li, X., Song, Y., Guo, J., Feng, C., Li, G., Yan, T., He, B.: Sensor fault diagnosis of autonomous underwater vehicle based on extreme learning machine. 2017 IEEE Underwater Technology (UT), Busan, Korea (South), pp. 1–5 (2017). https://doi.org/10.1109/UT.2017.7890303

  7. Kang, Y.J., Noh, Y., Jang, M.S., Park, S., Kim, J.T.: Hierarchical level fault detection and diagnosis of ship engine systems. Expert Syst. Appl. 213(Part A), 118814 (2023). https://doi.org/10.1016/j.eswa.2022.118814

  8. Zhang, X.Q., Sheng, C.X., Ouyang, W., Zheng L.K.: Fault diagnosis of marine electric thruster bearing based on fusing multisensor deep learning models. Measurement. 214, 112727 (2023). https://doi.org/10.1016/j.measurement.2023.112727

  9. Zhang, Y.C., Yu, K., Lei, Z.H., Ge, J., Xu, Y.D, Li, Z.X., Ren, Z.H., Feng, K.: Integrated intelligent fault diagnosis approach of offshore wind turbine bearing based on information stream fusion and semi-supervised learning. Expert Syst. Appl. 232, 120854 (2023). https://doi.org/10.1016/j.eswa.2023.120854

  10. Liu, R.N., Yang, B.Y., Zio, E., Chen, X.F.: Artificial intelligence for fault diagnosis of rotating machinery: A review. Mech. Syst. Signal Process. 108, 33–47 (2018). https://doi.org/10.1016/j.ymssp.2018.02.016

    Article  Google Scholar 

  11. Lei, Y.G., Yang, B., Jiang, X.W., Jia, F., Li, N.P., Nandi, A.K.: Applications of machine learning to machine fault diagnosis: A review and roadmap. Mech. Syst. Signal Process. 138, 106587 (2020). https://doi.org/10.1016/j.ymssp.2019.106587

  12. Lei, Y.G., Lin, J., He, Z.J., Zuo, M.J.: A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 35, 108–126 (2013). https://doi.org/10.1016/j.ymssp.2012.09.015

    Article  Google Scholar 

  13. Zhao, R., Yan, R.Q., Chen, Z.H., Mao, K.Z., Wang, P., Robert, X.G.: Deep learning and its applications to machine health monitoring. Mech. Syst. Signal Process. 115, 213–37 (2019). https://doi.org/10.1016/j.ymssp.2018.05.050

    Article  Google Scholar 

  14. Yang, D., Karimi, H.R., Gelman, L.: An explainable intelligence fault diagnosis framework for rotating machinery. Neurocomputing 541, 126257 (2023). https://doi.org/10.1016/j.neucom.2023.126257

    Article  Google Scholar 

  15. Zhang, Z.Q., Zhou, F.N., Karimi, H.R., Fujita, H., Hu, X., Wen, C.L., Wang, T.Z.: Attention gate guided multiscale recursive fusion strategy for deep neural network-based fault diagnosis. Eng. Appl. Artif. Intell. 126(Part C), 107052 (2023). https://doi.org/10.1016/j.engappai.2023.107052

    Article  Google Scholar 

  16. Tian, J., Han, D., Karimi, H.R., Zhang, Y., Shi, P.: Deep learning-based open set multi-source domain adaptation with complementary transferability metric for mechanical fault diagnosis. Neural Netw. 162, 69–82 (2023). https://doi.org/10.1016/j.neunet.2023.02.025

    Article  Google Scholar 

  17. Indolia, S., Goswamib, A.K., Mishrab, S.P., Asopa, P.: Conceptual understanding of convolutional neural network-a deep learning approach. Procedia Comput. Sci. 132, 679–688 (2018). https://doi.org/10.1016/j.procs.2018.05.069

    Article  Google Scholar 

  18. Janssens, O., Slavkovikj, V., Vervisch, B., Stockman, K., Loccufier, M., Verstockt, S.: Rik Van de Walle, and Sofie Van Hoecke: Convolutional neural network based fault detection for rotating machinery. J. Sound Vib. 377, 331–345 (2016). https://doi.org/10.1016/j.jsv.2016.05.027

    Article  Google Scholar 

  19. Jing, L.Y., Zhao, M., Li, P., Xu, X.Q.: A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox. Measurement 111, 1–10 (2017). https://doi.org/10.1016/j.measurement.2017.07.017

    Article  Google Scholar 

  20. Zhang, W., Li, C.H., Peng, G.L., Chen, Y.H., Zhang, Z.J.: A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load. Mech. Syst. Signal Process. 100, 439–453 (2018). https://doi.org/10.1016/j.ymssp.2017.06.022

    Article  Google Scholar 

  21. Lee, D.H.: Pseudo-Label: The simple and efficient semi-supervised learning method for deep neural networks. ICML 2013 Workshop: Challenges in Representation Learning (WREPL). 3, 896 (2013). https://api.semanticscholar.org/CorpusID:18507866

  22. Yu, K., Ma, H., Lin, T.R., Li, X.: A consistency regularization based semi-supervised learning approach for intelligent fault diagnosis of rolling bearing. Measurement. 165, 107987 (2020). https://doi.org/10.1016/j.measurement.2020.107987

  23. Yu, K., Lin, T.R., Ma, H., Li, X., Li, X.: A multi-stage semi-supervised learning approach for intelligent fault diagnosis of rolling bearing using data augmentation and metric learning. Mech. Syst. Signal Process. 146, 107043 (2021). https://doi.org/10.1016/j.ymssp.2020.107043

    Article  Google Scholar 

  24. Konečný, J., McMahan, H.B., Ramage, D., Richtárik, P.: Federated optimization: distributed machine learning for on-device intelligence. arXiv preprint. arXiv:1610.02527 (2016). https://doi.org/10.48550/arXiv.1610.02527

  25. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.y.: Communication efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics (PMLR). 1273–1282 (2017). https://doi.org/10.48550/arXiv.1602.05629

  26. Li, T., Sahu, A.Z., Sanjabi, M., Talwalkar, M., Smith, A., Virginia: Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450 (2020). https://doi.org/10.48550/arXiv.1812.06127

    Article  Google Scholar 

  27. Wang, J.Y., Liu, Q.H., Liang, H., Joshi, G., Poor, H.V.: Tackling the objective inconsistency problem in heterogeneous federated optimization. Adv. Neural. Inf. Process. Syst 33, 7611–7623 (2020). https://doi.org/10.48550/arXiv.2007.07481

    Article  Google Scholar 

  28. Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S., Stich, S., Suresh, A.T. Scaffold: Stochastic controlled averaging for federated learning. International Conference on Machine Learning (PMLR). 5132–5143 (2020). https://doi.org/10.48550/arXiv.1910.06378

  29. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. Adv. Neural Inf. Process. Syst. 30, (2017). https://doi.org/10.48550/arXiv.1703.05175

  30. Mu, X.T., Shen, Y.L., Cheng, K., Geng, X.L., Fu, J.X., Zhang, T., Zhang, Z.W.: Fedproc: Prototypical contrastive federated learning on non-iid data. arXiv preprint. arXiv:2109.12273 (2021). https://doi.org/10.48550/arXiv.2109.12273

  31. Zhang, X., Zhang, B., Yu, W., Kang, X.: Federated Deep Learning with Prototype Matching for Object Extraction From Very-High-Resolution Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 61, 1–16 (2023). https://doi.org/10.1109/TGRS.2023.3244136

    Article  Google Scholar 

  32. Zhang, W., Li, X., Ma, H., Luo, Z., Li, X.: Federated learning for machinery fault diagnosis with dynamic validation and self-supervision. Knowl. Based Syst. 213, 106679 (2021). https://doi.org/10.1016/j.knosys.2020.106679

  33. Zhang, Z.H., Xu, X.B., Gong, W.F., Chen, Y.W., Gao H.B.: Efficient federated convolutional neural network with information fusion for rolling bearing fault diagnosis. Control Eng. Pract. 116, 104913 (2021). https://doi.org/10.1016/j.conengprac.2021.104913

  34. Jiang, G.Q., Fan, W.P., Li, W.Y., Wang, L.J., He, Q., Xie, P., Li, X.L.: DeepFedWT: A federated deep learning framework for fault detection of wind turbines. Measurement 199, 111529 (2022). https://doi.org/10.1016/j.measurement.2022.111529

    Article  Google Scholar 

  35. Chen, J., Tang, J.H., Chen, J.: Federated Meta-Learning Framework for Few-shot Fault Diagnosis in Industrial IoT. GLOBECOM 2022–2022 IEEE Global Communications Conference. IEEE. 2993–2998 (2022). https://doi.org/10.1109/GLOBECOM48099.2022.10001294

  36. Liu, G.K., Shen, W.M., Gao, L., Kusiak, A.: Active federated transfer algorithm based on broad learning for fault diagnosis. Measurement. 208, 112452 (2023). https://doi.org/10.1016/j.measurement.2023.112452

  37. Yang, D., Xu, Z., Li W., Myronenko, A., Roth, H. R., Harmon, S., Xu, D.: Federated semi-supervised learning for COVID region segmentation in chest CT using multi-national data from China, Italy, Japan. Medical image analysis. 70, 101992 (2021). https://doi.org/10.48550/arXiv.2011.11750

  38. Liu, Q., Yang, H.Z., Dou, Q., Heng, P.A.: Federated Semi-supervised Medical Image Classification via Inter-client Relation Matching. arXiv preprint. arXiv:2106.08600 (2021). https://doi.org/10.48550/arXiv.2106.08600

  39. Albaseer, A., Ciftler, B. S., Abdallah, M., Al-Fuqaha, A.: Exploiting Unlabeled Data in Smart Cities using Federated Edge Learning. 2020 International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus. 1666–1671 (2020). https://doi.org/10.1109/IWCMC48107.2020.9148475.

  40. Yao, Z., Yang, Y., Yan Y., Gonzalez, J.E., Mahoney, M.W.: Benchmarking semi-supervised federated learning. arXiv preprint. arXiv:2008.11364 (2020). https://doi.org/10.48550/arXiv.2008.11364

  41. Jeong, J., Lee, S., Kim, J., Kwak, N.: Consistency-based semi-supervised learning for object detection. Adv. Neural. Inf. Process. Syst. 32, 10759–10768 (2019)

    Google Scholar 

  42. Arazo, E., Ortego, D., Albert, P., O’Connor, N.E., McGuinness, K.: Pseudo-labeling and confirmation bias in deep semi-supervised learning. IEEE.2020 International Joint Conference on Neural Networks (IJCNN). 1–8 (2020). https://doi.org/10.1109/IJCNN48605.2020.9207304

  43. Sohn, K., Berthelot, D., Li, C.L., Zhang, Z.Z., Carlini, N., Cubuk, E.D., Kurakin, A., Zhang, H., Raffel, C.: Fixmatch: Simplifying semi-supervised learning with consistency and confidence. arXiv preprint. arXiv:2001.07685 (2020). https://doi.org/10.48550/arXiv.2001.07685

  44. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel C.: Mixmatch: A holistic approach to semi-supervised learning. arXiv preprint. arXiv:1905.02249 (2019). https://doi.org/10.48550/arXiv.1905.02249

  45. Yang, F., Kai, W., Zhang, S.Y., Jiang, G.N., Liu, Y., Zheng, F., Zhang, W., Wang, C.J., Zeng, L.: Class-Aware Contrastive Semi-Supervised Learning. arXiv preprint. arXiv:2203.02261 (2022). https://doi.org/10.1109/CVPR52688.2022.01402

  46. Lin, H.W., Lou, J., Xiong, L., Shahabi, C.: SemiFed: Semi-supervised Federated Learning with Consistency and Pseudo-Labeling. arXiv preprint. (2021). https://doi.org/10.48550/arXiv.2108.09412

  47. Guo, Q., Qi, Y., Qi, S.Y., Wu, D.: Dual Class-Aware Contrastive Federated Semi-Supervised Learning. arXiv preprint. arXiv:2211.08914 (2022). https://doi.org/10.48550/arXiv.2211.08914

  48. Hou, K.C., Wang, N., Zhang, K.J., Song, L., Qi, Y., Miao, F.J.: Semi-supervised federated learning model based on Auto-Encoder neural network. Comput. Appl. Res. (In Chinese). 39, 1071–1104 (2022). https://doi.org/10.19734/j.issn.1001-3695.2021.08.0374

    Article  Google Scholar 

  49. Jeong, W.Y., Yoon, J.H., Yang, E.H., Hwang, S.J.: Federated Semi-Supervised Learning with Inter-Client Consistency & Disjoint Learning. arXiv preprint. arXiv:2006.12097 (2020). https://doi.org/10.48550/arXiv.2006.12097

  50. Long, Z.W., Che, L.W., Wang, Y.Q., Ye, M.C., Luo, J.Y., Wu, J.Z., Xiao, H.P., Ma, F.L.: FedSiam: Towards Adaptive Federated Semi-Supervised Learning. arXiv preprint. arXiv:2012.03292 (2020). https://doi.org/10.48550/arXiv.2012.03292

  51. Smith, W. A., Randall, R. B.: Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study. Mech. Syst. Signal Process. 64–65 (2015). https://doi.org/10.1016/j.ymssp.2015.04.021

Download references

Acknowledgements

The authors would like to thank Case Western Reserve University for

providing bearing vibration data.

Funding

This work was supported by National Natural Science Foundation of China (Grant numbers 62073213 and 52,205,111).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Supervision,

review and editing of manuscript were performed by Funa Zhou. The validation and original draft.

of the manuscript was performed by Wei Xu. And all authors commented on previous versions of.

the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Funa Zhou.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F., Xu, W., Wang, C. et al. A Semi-Supervised Federated Learning Fault Diagnosis Method Based on Adaptive Class Prototype Points for Data Suffered by High Missing Rate. J Intell Robot Syst 109, 93 (2023). https://doi.org/10.1007/s10846-023-02025-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-023-02025-8

Keywords

Navigation