Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-30T04:05:12.990Z Has data issue: false hasContentIssue false

LAGOA SALGADA: AN OVERVIEW OF A BRAZILIAN HYPERSALINE LAGOON ENVIRONMENTAL STUDIES OVER THE LAST 5000 YEARS USING RADIOCARBON DATE CORRECTIONS

Published online by Cambridge University Press:  14 December 2023

M I Oliveira
Affiliation:
Laboratório de Radiocarbono (LAC-UFF), Instituto de Física, Universidade Federal Fluminense (UFF), Av. Gal. Milton Tavares de Souza, s/n, Niterói, 24210-346, Rio de Janeiro, Brazil Programa de Pós Graduação em Geoquímica, Instituto de Química, Universidade Federal Fluminense (UFF), Outeiro São João Batista, s/n, Niterói, 24210-141, Brazil
C Carvalho*
Affiliation:
Laboratório de Radiocarbono (LAC-UFF), Instituto de Física, Universidade Federal Fluminense (UFF), Av. Gal. Milton Tavares de Souza, s/n, Niterói, 24210-346, Rio de Janeiro, Brazil Programa de Pós Graduação em Geoquímica, Instituto de Química, Universidade Federal Fluminense (UFF), Outeiro São João Batista, s/n, Niterói, 24210-141, Brazil
A Assumpção
Affiliation:
Laboratório de Radiocarbono (LAC-UFF), Instituto de Física, Universidade Federal Fluminense (UFF), Av. Gal. Milton Tavares de Souza, s/n, Niterói, 24210-346, Rio de Janeiro, Brazil
K Macario
Affiliation:
Laboratório de Radiocarbono (LAC-UFF), Instituto de Física, Universidade Federal Fluminense (UFF), Av. Gal. Milton Tavares de Souza, s/n, Niterói, 24210-346, Rio de Janeiro, Brazil Programa de Pós Graduação em Geoquímica, Instituto de Química, Universidade Federal Fluminense (UFF), Outeiro São João Batista, s/n, Niterói, 24210-141, Brazil
D Amaral
Affiliation:
Laboratório de Radiocarbono (LAC-UFF), Instituto de Física, Universidade Federal Fluminense (UFF), Av. Gal. Milton Tavares de Souza, s/n, Niterói, 24210-346, Rio de Janeiro, Brazil Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (CEFET/RJ), Miguel Ângelo, 96, Maria da Graça, 20785-220, Rio de Janeiro, Brazil
C F Barbosa
Affiliation:
Programa de Pós Graduação em Geoquímica, Instituto de Química, Universidade Federal Fluminense (UFF), Outeiro São João Batista, s/n, Niterói, 24210-141, Brazil
F Oliveira
Affiliation:
Laboratório de Radiocarbono (LAC-UFF), Instituto de Física, Universidade Federal Fluminense (UFF), Av. Gal. Milton Tavares de Souza, s/n, Niterói, 24210-346, Rio de Janeiro, Brazil Departamento de Físico-Química, Universidade Federal Fluminense (UFF), Outeiro São João Batista, s/n, Niterói, 24001-970, Rio de Janeiro, Brazil
A Bahniuk
Affiliation:
LAMIR Institute, Universidade Federal do Paraná (UFPR) Av. Cel. Francisco H. dos Santos, 100 - Jardim das Américas, 81530-001, Curitiba - PR, Brazil
C Vasconcelos
Affiliation:
Center of Applied Geosciences of Geological Survey of Brazil (CGA-SBG), 22290-180 Rio de Janeiro, Brazil
A Cruz
Affiliation:
Department of Geological Sciences, California State University, 9001 Stockdale Highway, Bakersfield, CA 93311-1022, USA
A Blanco
Affiliation:
Departamento de Engenharia Ambiental, Seccional Girardot, Universidade de Cundinamarca (UDEC), Carrera 19, 24 - 209, Colombia
*
*Corresponding author. Email: carlac@id.uff.br

Abstract

The Lagoa Salgada is located in the Paraíba do Sul river delta plain on the coast of Rio de Janeiro state, Brazil, and is one of the few lagoons in the world that have well-developed recent stromatolites. Lagoa Salgada is a hypersaline lagoon formed in a very complex environmental system subjected to terrestrial and oceanic influences under different sea level regimes and climate variations. In addition, sediment and stromatolites are characterized by unusually positive inorganic δ13C VPDB values. For this reason, it has been the target of several geological and paleoenvironmental studies, which, in their great majority, require a geochronological technique in order to determine the changes in the environment over time. When radiocarbon (14C) dating is used, it is necessary to consider some details as the source of 14C in the environment and perform 14C ages calibration accordingly. In the present paper, a bibliographic survey was carried out in order to review the data treatment and improve the environmental evolution discussion based on accurate calibration. Using the Marine20 curve and an undetermined ΔR, we generated growth and depositional models to establish an overview of the formation of this lagoon.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alves, EQ, Macario, KD, Spotorno, P, Oliveira, FM, Muniz, MC, Fallon, S, Souza, R, Salvador, A, Eschner, A, Bronk Ramsey, C. 2020. Nineteenth-century expeditions and the radiocarbon marine reservoir effect on the Brazilian coast. Geochimica et Cosmochimica Acta 297:276287.CrossRefGoogle Scholar
Alves, EQ, Macario, KD, Souza, RCCL, Aguilera, O, Goulart, AC, Scheel-Ybert, R, Bachelet, C, Carvalho, C, Oliveira, FM, Douka, K. 2015a. Marine Reservoir Corrections on the Southeastern Coast of Brazil: Paired Samples from the Saquarema Shellmound. Radiocarbon 57:517525.CrossRefGoogle Scholar
Alves, E, Macario, K, Souza, R, Pimenta, A, Douka, K, Oliveira, F, Chanca, I, Angulo, R. 2015b. Radiocarbon Reservoir corrections on the Brazilian coast from pre-bomb marine shells. Quaternary Geochronology (Print):30–35.CrossRefGoogle Scholar
Angulo, RJ, Souza, MC, Reimer, PJ, Sasaoka, SK. 2005. Reservoir effect of the southern and southeastern Brazilian coast. Radiocarbon 47(1):6773.CrossRefGoogle Scholar
Awramik, SM, Buchheim, HP. 2012. The quest for microbialite analogs to the south atlantic pre-salt carbonate hydrocarbon reservoirs of africa and south america. HGS International Dinner Meeting talk September 10.Google Scholar
Bahniuk, A. 2013. Coupling organic and inorganic methods to study growth and diagenesis of modern microbial carbonates, Rio de Janeiro State, Brazil: implications for interpreting ancient microbialite facies development [PhD thesis]. ETH Zurich, no. 20984. https://doi.org/10.3929/ethz-a-009785302 CrossRefGoogle Scholar
Barroso, LV, Bernardes, MC. 1995. Um patrimônio natural ameaçado. Ciência Hoje 19(110):7074.Google Scholar
Birgel, D, Meister, P, Lundberg, R, Horath, TD, Bontognali, TRR, Bahniuk, AM, De Rezende, CE, Vasconcelos, C, Mckenzie, JA. 2015. Methanogenesis produces strong 13C enrichment in stromatolites of Lagoa Salgada, Brazil: a modern analogue for paleo-neoproterozoic stromatolites? Geobiology 13:245266.CrossRefGoogle Scholar
Blanco, A. 2014. Processos organo-sedimentares da Lagoa Salgada (RJ, Brasil) durante os últimos 7000 anos A.P: implicações paleoambientais. Master Dissertation. Universidade Federal Fluminense. 79 p. https://app.uff.br/riuff/handle/1/1541 Google Scholar
Braissant, O, Cailleau, G, Aragno, M, Verrecchia, EP. 2004. Biologically induced mineralization in the tree milicia excelsa (Moraceae): its causes and consequences to the environment. Geobiology 2:5966.CrossRefGoogle Scholar
Bronk Ramsey, C. 2013. Recent and planned developments of the program OxCal. Radiocarbon 55(2–3):720730.CrossRefGoogle Scholar
Bronk Ramsey, C. 2021. OxCal program. Version 4.2.4. Available at: https://c14.arch.ox.ac.uk/oxcal.html Google Scholar
Burne, RV, Moore, LS. 1987. Microbialites: organosedimentary deposits of benthic microbial communities. Palaios 2:241254.CrossRefGoogle Scholar
Carvalho, C, Oliveira, MIN, Macario, K, Guimarães, RB, Keim, CN, Sabadini-Santos, E, Crapez, MAC. 2017. Stromatolite growth in Lagoa Vermelha, southeastern coast of Brazil: evidence of environmental changes. Radiocarbon. doi: 10.1017/RDC.2017.126CrossRefGoogle Scholar
Carvalho, C, Macario, KD, Oliveira, MI, Oliveira, FM, Chanca, IS, Alves, EQ, Souza RCCL Aguilera O, Douka, K. 2015. Potential use of archaeological snail shells for the calculation of local marine reservoir effect. Radiocarbon 57(3):459467.CrossRefGoogle Scholar
Callefo, F. 2014. Análise tafonômica e paleoecológica de estruturas associadas a comunidades microbianas holocênicas e permianas. Master Dissertation. Universidade Estadual de Campinas, Instituto de Geociências, Campinas, SP.Google Scholar
Coimbra, MM, Silva, CG, Barbosa, CF, Mueller, KA. 2000. Radiocarbon measurements of stromatolite heads and crusts at the Salgada Lagoon, Rio de Janeiro State, Brazil. Nuclear Instruments and Methods in Physics Research B 172:592596.CrossRefGoogle Scholar
Cruz, AP, Barbosa, C, Blanco, A, Oliveira, C, Silva, C, Seoane, JC. 2019. Mid–late Holocene event registered in organo-siliciclastic sediments of Lagoa Salgada carbonate system, southeast Brazil. Climate of the Past 15:13631373.CrossRefGoogle Scholar
Damazio, CM. 2004. Tipificação e bioestratificação cianobacteriana das esteiras microbianas da borda noroeste da Lagoa Pitanguinha, Holoceno do Rio de Janeiro, Brasil. Programa de Graduação em Ciências Biológicas, Universidade Federal do Estado do Rio de Janeiro, Monografia de Bacharelado. 171 p.Google Scholar
Dias, JL, Carminatti, M, Scarton, JC, Guardado, LR, Esteves, FR. 1991. Aspectos da evolução tectono-sedimentar e a ocorrência de hidrocarbonetos na Bacia de Campos. In: Raja Gabaglia GP, Milani EJ, editors. Origem e evolução de bacias sedimentares. Petrobrás. p. 333–360.Google Scholar
Dorneles, V. 2018. Caracterização geoquímica e geomicrobiológica de microbialito da Lagoa Salgada, Estado do Rio de Janeiro. Trabalho de conclusão de curso em Geologia. Universidade Federal do Paraná. 56 p.Google Scholar
Dupraz, C, Reid, PR, Braissant, O, Decho, AW, Norman, RS, Visscher, PT. 2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews 96: 141162.CrossRefGoogle Scholar
Dupraz, C, Reid, RP, Visscher, PT. 2010. Modern microbialites. In: Reitner, J, Thiel, V, editors. Encyclopedia of geobiology. Encyclopedia of Earth Sciences Series. Dordrecht: Springer.Google Scholar
Esteves, FA. 1998. Ecologia das lagoas costeiras do Parque Nacional da Restinga de Jurubatiba e do município de Macaé (RJ). Interciência: 56Google Scholar
Google. 2022. Lagoa Salgada, Campos dos Goytacazes - Rio de Janeiro. Google Maps. https://www.google.com.br/maps/@-21.9854432,-40.92011,9.95z Google Scholar
Grotzinger, JP, Knoll, AH. 1999. Stromatolites in precambrian carbonates: evolutionary mileposts or environmental dipsticks. Annual Reviews of Earth and Planetary Sciences 27:313358.CrossRefGoogle ScholarPubMed
Heaton, T, Köhler, P, Butzin, M, Bard, E, Reimer, R, Austin, W, Bronk Ramsey, C, Grootes, PM, Hughen, KA, Kromer, B, Reimer, PJ, Adkins, J, Burke, A, Cook, M, Olsen, J, Skinner, L. 2020. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62(4):779820.CrossRefGoogle Scholar
Hofmann, HJ. 1969. Attributes of stromatolites. Geological Survey of Canada Paper 58:69–39.Google Scholar
Hofmann, HJ. 1973. Stromatolites: characteristics and utility. Earth-Science Reviews 9:339373.CrossRefGoogle Scholar
Hogg, A, Heaton, T, Hua, Q, Palmer, J, Turney, C, Southon, J, et al. 2020. SHCal20 Southern Hemisphere Calibration, 0–55,000 years cal BP. Radiocarbon 62(4):759778.CrossRefGoogle Scholar
Iespa, AAC, Iespa, CMD, Borghi, L. 2012. Evolução paleoambiental da Lagoa Salgada utilizando microbialitos, com ênfase em microfácies carbonáticas. São Paulo, UNESP. Geociências 31(3):71380.Google Scholar
Lamego, AR. 1955. Geologia das quadrículas de Campos, São Tomé, Lagoa Feia e Xexé. Rio de Janeiro: DNPM-Divisão de Geologia e Mineralogia. 60 p.Google Scholar
Lemos, RMT. 1994. Estudo Das Fácies Deposicionais E Das Estruturas Estromatolíticas Da Lagoa Salgada - Rio De Janeiro [master’s dissertation]. Instituto De Geociências, Universidade Federal Fluminense, Niterói.Google Scholar
Macario, KD, Alves, EQ, Belém, AL, Aguilera, O, Bertucci, T, Tenório, C, Oliveira, FM, Chanca, IS, Carvalho, C, Souza, R, Scheel-Ybert, R, Nascimento, GS, Dias, F, Caon, J. 2018. The marine reservoir effect on the coast of Rio de Janeiro: deriving ΔR values from fish otoliths and mollusk shells. Radiocarbon 60(4):11511168.CrossRefGoogle Scholar
Macario Kita, D, Alves, EQ, Chanca, IS, Oliveira, FM, Carvalho, C, Souza, R, Aguilhera, O, Tenório, MC, Rapagña, LC, Douka, K, Silva, E. 2016a. The Usiminas shellmound on the Cabo Frio island: Marine reservoir effect in an upwelling region on the coast of Brazil. Quaternary Geochronology (Print) 35:3642.CrossRefGoogle Scholar
Macario, KD, Alves, EQ, Carvalho, C, Oliveira, FM, Ramsey, CB, Chivall, D, Souza, R, Simone, LRL, Cavallari, DC. 2016b. The use of the terrestrial snails of the genera Megalobulimus and Thaumastus as representatives of the atmospheric carbon reservoir. Scientific Reports 6: 27395.CrossRefGoogle ScholarPubMed
Macario, KD, Souza, RCCL, Aguilera, OA, Carvalho, C, Oliveira, FM, Alves, EQ, Chanca, IS, Silva, E, Douka, K, Decco, J, Trindade, D, Marques, JR AN, Anjos, RM, Pamplona, FC. 2015. Marine reservoir effect on the Southeastern coast of Brazil: results from the Tarioba shellmound paired samples. Journal of Environmental Radioactivity 143:1419.CrossRefGoogle ScholarPubMed
Macario, K, Tenório, M, Alves, E, Oliveira, F, Chanca, I, Netto, B, Carvalho, C, Souza, R, Aguilera, O, Guimarães, R. 2017. Terrestrial mollusks as chronological records in Brazilian Shellmounds. Radiocarbon 59(5):15611577. doi: 10.1017/RDC.2017.34 CrossRefGoogle Scholar
Martin, L, Suguio, K, Dominguez, JML, Flexor, JM, Azevedo, AEG. 1984. Evolução da planície costeira do Rio Paraíba do Sul (RJ) durante o Quaternário: Influência do nível do mar. In: Congresso Brasileiro de Geologia 33:8497.Google Scholar
Martin, L, Suguio, K, Flexor, JM. 1993. As flutuações de nível do mar durante o Quaternário Superior e a evolução geológica de “deltas “brasileiros”. Boletim IG - USP, Especial Publish 15. 186 p.CrossRefGoogle Scholar
Millard, A. 2014. Conventions for reporting radiocarbon determinations. Radiocarbon 56(2):555559.CrossRefGoogle Scholar
Mohan, RK, Short, AD, Cambers, G, MacLeod, M, Cooper, JAG, Hopley, D, Craig-Smith, SJ. 2005. Coastal Lakes and Lagoons. In: Encyclopedia of coastal science. p. 263266. doi: 10.1007/1-4020-3880-1_81 CrossRefGoogle Scholar
Moreira-Turcq, PF. 2000. Impact of a low salinity year on the metabolism of a hypersaline coastal lagoon (Brazil). Hydrobiologia 429(1–3):133140.CrossRefGoogle Scholar
Nascimento, G, Eglinton, TI, Haghipour, N, Albuquerque, AL, Bahniuk, A, Mckeniz, JA, Vasconcelos, C. 2019. Oceanographic and sedimentological influences on carbonate geochemistry and mineralogy in hypersaline coastal lagoons, Rio de Janeiro state, Brazil. Limnology and Oceanography 64(6):116.CrossRefGoogle Scholar
Pereira, L. 2014. Fácies sedimentares e evolução paleoambiental da Lagoa Salgada (Litoral norte do Rio de Janeiro). Trabalho de Conclusão do curso de Geologia. Universidade Federal do Rio de Janeiro. 62 p.Google Scholar
Pizarro, JS, Branco, CCM. 2012. Challenges in implementing an eor project in the Pre-salt province in deep offshore Brasil. In SPE EOR Conference at Oil and Gas West Asia. Society of Petroleum Engineers.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, C, Cheng, H, Edwards, RL, Friedrich, M, et al. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887. doi: 10.2458/azu_js_rc.55.16947 CrossRefGoogle Scholar
Riding, R, Awramik, S. 2000. Microbial sediments. Berlin: Springer. 331 p.CrossRefGoogle Scholar
Silva e Silva LH, Senra, MCE. 2000. Estudo comparativo de esteiras microbianas recentes em duas lagoas hipersalinas. Revista Universidade Guarulhos, Geociências 5:225227.Google Scholar
Silva, LH, Alves, S, Magina, F, Gomes, S. 2013. Composição cianobacteriana e química dos estromatólitos da lagoa Salgada, Neógeno do estado do Rio de Janeiro, Brasil, Geol. USP. Série Científica 13:95–106.CrossRefGoogle Scholar
Silva, S 2017. Caracterização palinofaciológica e organogeoquímica de testemunhos da Lagoa Salgada [master’s dissertation]. Universidade Federal do Rio de Janeiro. 167 p.Google Scholar
Silva, DR, Mansur, KL, Almeida, LFB. 2018. Evaluation of the scientific value of Lagoa Salgada (Rio de Janeiro, Brazil): characterization as geological heritage, threats and strategies for geoconservation. Journal of the Geological Survey of Brazil 1:6980.CrossRefGoogle Scholar
Soffiati, AA. 1998. Histórico Sócio-ecológico: Aspectos históricos das lagoas do norte do estado do Rio de Janeiro In: Esteves FA, editor. Ecologia das lagoas costeiras. Macaé: NUPEM/UFRJ.Google Scholar
Souza, CRG, Filho, PW, Esteves, LS, Vital, H, Dillenburg, SR, Patchineelam, SM, Addad, JE. 2005. Praias Arenosas e Erosão Costeira. In: Souza CR de G et al., editors. Quaternário do Brasil. Holos, Editora, Ribeirão Preto (SP). p. 130–152.Google Scholar
Srivastava, NK. 1999. Lagoa Salgada (Rio de Janeiro)—estromatólitos recentes. In: Schobbenhaus C, Campos DA, Queiroz ET, Winge M, Berbert-Born M, editors. Sítios Geológicos e Paleontológicos do Brasil.Google Scholar
Strikis, N, Cruz, F, Cheng, H, Karmann, I, Edwards, RL, Vuille, M, Wang, X, De Paula, M, Novello, V, Auler, A. 2011. Abrupt variations in South American monsoon rainfall during the Holocene based on a speleothem record from central-eastern Brazil. Geology 39(11):10751078.CrossRefGoogle Scholar
Vasconcelos, C, McKenzie, JA. 1997. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). Journal of Sedimentary Research 67:378390.Google Scholar
Vasconcelos, C, Warthmann, R, McKenzie, J, Visscher, PT, Bittermann, AG, van Lith, Y. 2006. Lithifying microbial mats in Lagoa Vermelha, Brazil: Modern Precambrian relics? Sedimentary Geology 185:175183.CrossRefGoogle Scholar
Vologdin, AG. 1962. The oldest algae of the USSR. Academy of Sciences of the USSR. p. 657.Google Scholar
Walter, M. 1976. Stromatolites. Developments in sedimentology. Elsevier. p. 790.Google Scholar
Supplementary material: File

Oliveira et al. supplementary material

Oliveira et al. supplementary material

Download Oliveira et al. supplementary material(File)
File 8.6 KB