Skip to main content
Log in

Asymptotically de-Sitter solution with negative gravitational constant from El-Nabulsi’s non-standard Lagrangian

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this short communication, we have used one special class of non-standard Lagrangians which is of exponential introduced by El-Nabulsi in his analysis of several problems arising in classical and quantum dynamics to construct a cosmological model that is characterized by a negative Newton’s gravitational constant. This approach is characterized by a repulsive gravity which may solve several problems that currently overwhelm the standard theory of gravitation. We show that repulsive/negative gravity arises naturally if the El-Nabulsi exponential Lagrangian is used in place of the conventional Lagrangian. Furthermore, it has been shown that this approach can reproduce known results in modern cosmology which are in agreement with recent observational data. We speculate that El-Nabulsi non-standard exponential Lagrangian can explain the observed accelerating expansion of the universe and bring some new insights into understanding the nature of negative gravitational constant and its consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C W Will, Experimental gravitation from Newton’s principia to Einstein’s general relativity. In 300 Hundred Years of Gravitation (eds.) S Hawking and W Israel, (Cambridge: Cambridge University Press) (1987)

  2. S Weinberg Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (USA: John Wiley & Sons) (1972)

    Google Scholar 

  3. C Brans and R H Dicke Phys. Rev. 124 925 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  4. M Gasperini Gen. Rel. Grav. 30 1703 (1998)

  5. R Hassannejad, S Navid Nousavi arXiv: 1811.10008

  6. A B Batista, J C Favris and S V B Goncalves Class. Quant. Grav. 18 1389 (2001)

    Article  ADS  Google Scholar 

  7. I Ayuso, J P Mimoso and N J Nunes Galaxies 7 38 (2019)

    Article  ADS  Google Scholar 

  8. P P Mannheim Found. Phys. 30 709 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  9. D Pugliese and H Quevedo Gen. Rel. Grav. 53 89 (2011)

    Article  ADS  Google Scholar 

  10. V Antunes M. Novello Gen. Rel. Grav. 49 55 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  11. M Hohmann and M N R Wohlfarth Phys. Rev. D81 104006 (2010)

    ADS  Google Scholar 

  12. N Gorkavyi and A Vasilkov Mon. Not. R. Astron. Soc. 461 2929 (2016)

    Article  ADS  CAS  Google Scholar 

  13. I Albarran, M Bouhmadi-Lopez and J Morais Eur. Phys. J. C78 260 (2018)

    Article  ADS  Google Scholar 

  14. E T Hanlmeli et al Phys. Rev. D 101 063513 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  15. C Pilot J. High Energy Phys. Gravit. Cosmol. 5 41 (2019)

    Article  CAS  Google Scholar 

  16. V I Arnold Mathematical Methods of Classical Mechanics (New York: Springer) (1978)

    Book  Google Scholar 

  17. J F Carinena, M F Ranada and M Santander J. Math. Phys. 46 062703 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  18. J F Carinena and J F Nunez Nonlinear Dyn. 83 457 (2016)

    Article  Google Scholar 

  19. J F Carinena and J F Nunez Nonlinear Dyn. 86 1285 (2016)

    Article  Google Scholar 

  20. J F Carinera Int. J. Geom. Meth. Mod. Phys. 16 1940001 (2019)

    Article  Google Scholar 

  21. J L Cieslinski and T Nikiciuk J. Phys. A Math. Gen. 43 175205 (2010)

    Article  ADS  Google Scholar 

  22. A I Alekseev and B A Arbuzov Theor. Math. Phys. 59 372 (1984)

    Article  Google Scholar 

  23. J Jiang, Y Feng and S Xu J. Syst. Sci. Inform. 7 90 (2019)

    Google Scholar 

  24. Z E Musielak J. Phys. A Math. Theor. 41 055205 (2008)

    Article  ADS  Google Scholar 

  25. Z E Musielak, D Roy and K D Swift Chaos Solitons Fract. 38 894 (2008)

    Article  ADS  Google Scholar 

  26. Z E Musielak Chaos Solitons Fract. 42 2645 (2009)

    Article  ADS  Google Scholar 

  27. A Saha and B Talukdar Rep. Math. Phys. 73 299 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  28. J Song and Y Zhang Acta Mech. 229 285 (2018)

    Article  MathSciNet  Google Scholar 

  29. Y Zhang and X S Zhou Nonlinear Dyn. 84 1867 (2016)

    Article  Google Scholar 

  30. X S Zhou and Y Zhang Chin. Quart. Mech. 37 15 (2016)

    Google Scholar 

  31. Y Zhang, X P Wang Symmetry 1061 (2019)

  32. N Davachi and Z E Musielak J. Undergr. Rept. Phys. 29 100004 (2019)

    Article  ADS  Google Scholar 

  33. R A El-Nabulsi Qual. Theor. Dyn. Syst. 12 273 (2012)

    Article  Google Scholar 

  34. R A El-Nabulsi, T A Soulati and H Rezazadeh J. Adv. Res. Dyn. Cont. Syst. 5 50 (2013)

    Google Scholar 

  35. R A El-Nabulsi Nonlinear Dyn. 74 381 (2013)

    Article  Google Scholar 

  36. R A El-Nabulsi Tbilisi Math. J. 9 279 (2016)

    Article  MathSciNet  Google Scholar 

  37. R A El-Nabulsi Proc. Nat. Acad. Sci. India A Phys. Sci. 85 247 (2015)

    Article  Google Scholar 

  38. R A El-Nabulsi Ind. J. Phys. 87 465 (2013)

    Article  CAS  Google Scholar 

  39. R A El-Nabulsi Ind. J. Phys. 87 379 (2013)

    Article  CAS  Google Scholar 

  40. R A El-Nabulsi J. Atom. Mol. Sci. 5 268 (2014)

    Google Scholar 

  41. R A El-Nabulsi Appl. Math. Lett. 43 120 (2015)

    Article  MathSciNet  Google Scholar 

  42. R A El-Nabulsi Math. Sci. 9 173 (2015)

    Article  MathSciNet  Google Scholar 

  43. R A El-Nabulsi Z. Naturforsch. 71 817 (2016)

    Article  ADS  CAS  Google Scholar 

  44. R A El-Nabulsi Anal. Univ. Vest Timisoara Math. Inf. LIV1 139 (2016)

    MathSciNet  Google Scholar 

  45. R A El-Nabulsi Can. J. Phys. 97 816 (2019)

    Article  ADS  CAS  Google Scholar 

  46. R A El-Nabulsi Can. J. Phys. 92 1149 (2014)

    Article  ADS  CAS  Google Scholar 

  47. R A El-Nabulsi Proc. R. Soc. A476 20200190 (2020)

    Article  ADS  Google Scholar 

  48. R A El-Nabulsi J. Theor. Appl. Phys. 7 58 (2013)

    Article  ADS  Google Scholar 

  49. R A El-Nabulsi Comm. Theor. Phys. 69 233 (2018)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  50. R A El-Nabulsi J. Nig. Math. Soc. 36 101 (2017)

    MathSciNet  Google Scholar 

  51. R A El-Nabulsi Nonlinear Dyn. 79 2055 (2015)

    Article  Google Scholar 

  52. R A El-Nabulsi Nonlinear Dyn. 81 939 (2015)

    Article  Google Scholar 

  53. R A El-Nabulsi Int. J. Nonlinear Sci. Num. Simul. 21 761 (2020)

    Article  MathSciNet  Google Scholar 

  54. R A El-Nabulsi Proc. Natl. Acad. Sci. India Sec. A Phys. Sci 84 563 (2014)

    Article  Google Scholar 

  55. R A El-Nabulsi Comp. Appl. Math. 33 163 (2014)

    Article  Google Scholar 

  56. Y Zhang and X S Zhou Nonlinear Dyn. 84 1867 (2016)

    Article  Google Scholar 

  57. J Jiang, Y Feng and S Xu J. Syst. Sci. Inf. 7 90 (2019)

    Google Scholar 

  58. R A El-Nabulsi and A K Golmankhaneh Int. J. Geom. Meth. Mod. Phys. 19 2250080 (2022)

    Article  Google Scholar 

  59. A L Segovia, L C Vestal and Z E Musielak Phys. Lett. A453 128457 (2022)

    Article  Google Scholar 

  60. S X Jin, Y M Li and Y Zhang Ind. J. Phys. 96 2437 (2022)

    Article  CAS  Google Scholar 

  61. R A El-Nabulsi J. Korean Phys. Soc. 79 345 (2021)

    Article  ADS  Google Scholar 

  62. R A El-Nabulsi Phys. C Supercond. Appl. 581 1353808 (2021)

    Article  ADS  CAS  Google Scholar 

  63. R A El-Nabulsi J. Theor. Appl. Phys. 7 58 (2013)

    Article  ADS  Google Scholar 

  64. R A El-Nabulsi Eur. Phys. J. P132 295 (2017)

    Google Scholar 

  65. R A El-Nabulsi J. Theor. Appl. Phys. 7 60 (2013)

    Article  Google Scholar 

  66. Z E Musielak, N Davachi, M Rosario-Franco J. Appl. Math. 3170130 (2020)

  67. Z E Musielak, N Davachi and M Rosario-Franco Mathematics 8 379 (2020)

    Article  Google Scholar 

  68. R A El-Nabulsi Mathematics 3 727 (2015)

    Article  Google Scholar 

  69. J S Farnes Astron. Astrophys. 620 A92 (2018)

    Article  ADS  CAS  Google Scholar 

  70. A I Arbab Chin. Phys. Lett. 25 4497 (2008)

    Article  ADS  Google Scholar 

  71. E T Hanimeli, I Tutusaus and B Lamine Blanchard Univ. 8 148 (2022)

    CAS  Google Scholar 

  72. Z Sakr and D Sapone J. Cosm. Astropart. Phys. 03 034 (2022)

    Article  ADS  Google Scholar 

  73. R A El-Nabulsi Comm. Theor. Phys. 54 16 (2010)

    Article  ADS  CAS  Google Scholar 

  74. R A El-Nabulsi Eur. Phys. J. P103 102 (2015)

    Google Scholar 

  75. R A El-Nabulsi Eur. Phys. J. P126 114 (2011)

    Google Scholar 

  76. R A El-Nabulsi Res. Astron. Astrophys. 11 759 (2011)

    Article  ADS  Google Scholar 

  77. R A El-Nabulsi Comm. Theor. Phys. 17 831 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  78. S Kumar Month. Not. R. Astron. Soc. 422 2532 (2012)

    Article  ADS  Google Scholar 

  79. G Sethi, A Dev and D Jain Phys. Lett. B 624 135 (2005)

    Article  ADS  CAS  Google Scholar 

  80. A Tripathi, A Sangwan and H K Jassal J. Cosm. Astropart. Phys. 06 012 (2017)

    Article  ADS  Google Scholar 

  81. R A El-Nabulsi Mod. Phys. Lett. A35 2050252 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  82. R A El-Nabulsi Int. J. Mod. Phys. D18 691 (2009)

    Article  ADS  Google Scholar 

  83. R A El-Nabulsi Braz. J. Phys. 40 273 (2010)

    CAS  Google Scholar 

  84. R A El-Nabulsi Gen. Rel. Grav. 42 1381 (2010)

    Article  ADS  Google Scholar 

  85. W Zhao, B S Wright and B Li J. Cosm. Astropart. Phys. 10 052 (2018)

    Article  ADS  Google Scholar 

  86. T Prokopec arXiv preprint arXiv:1105.0078

  87. M K Sharma and S K J Pacif Ann. Phys. 454 169345 (2023)

    Article  CAS  Google Scholar 

  88. E D Schiappacasse and L H Ford Phys. Rev. D 94 084030 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  89. O Atale Indian J. Phys. (2023)

  90. R Rosenfeld Phys. Rev. D 75 083509 (2007)

    Article  ADS  Google Scholar 

  91. D Rapetti et al Mon. Not. R. Astron. Soc. 375 1510 (2007)

    Article  ADS  Google Scholar 

  92. T Padmanabhan Gener. Relativ. Gravit. 40 529 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  93. V Sahni and A Starobinsky Int. J. Modern Phys. D 9 373 (2000)

    Article  ADS  Google Scholar 

  94. P J E Peebles and B Ratra Rev. Modern Phys. 75 559 (2003)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  95. S Nájera, A Gamboa, A Aguilar-Nieto and C Escamilla-Rivera Astron. Astrophys. 651 L13 (2021)

    Article  ADS  Google Scholar 

  96. M Ballardini, F Finelli and D Sapone (2021) arXiv preprint arXiv:2111.09168

  97. R A El-Nabulsi Chin. Phys. Lett. 23 1124 (2006)

    Article  Google Scholar 

  98. R A El-Nabulsi Phys. Lett. B619 26 (2005)

    Article  ADS  Google Scholar 

  99. R A El-Nabulsi Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 85 395 (2015)

    Article  Google Scholar 

  100. J B Hartle, S W Hawking, T Hertog (2012) arXiv: 1205.3807

  101. L Visinelli, S Vagnozzi and U Danielsson Symmetry 11 1035 (2019)

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omprakash Atale.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atale, O. Asymptotically de-Sitter solution with negative gravitational constant from El-Nabulsi’s non-standard Lagrangian. Indian J Phys 98, 1893–1900 (2024). https://doi.org/10.1007/s12648-023-02952-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02952-0

Keywords

Navigation