Skip to main content
Log in

Temporal variability of carabid beetles as a function of geography, environment, and species

  • Research
  • Published:
Theoretical Ecology Aims and scope Submit manuscript

Abstract

Populations of species fluctuate through time and across geographic space. Identifying the potential drivers of temporal variability in population dynamics is a fundamental aim of population ecology, with clear implications to understanding population extinction risk, the influence of diversity on composite community scale variability, and the extent to which temporal variability is driven by exogenous (e.g., climate) or endogenous (e.g., life history) factors. We used data from the National Ecological Observatory Network (NEON) consisting of over 750 carabid beetle species systematically sampled between 2013 and 2021 across 47 terrestrial sites in the USA to examine the relative roles of geographic location, environmental gradients, and species identity on temporal variability. We find an effect of species taxonomic identity on resulting temporal variability in abundance both at site-level and taxonomy-level scales. Environmental variables (mean annual temperature and precipitation and seasonality in temperature and precipitation) and geographic position (latitude and longitude) were not strongly related to temporal variability, and there was no spatial signal in site-level mean temporal variability. The importance of species to temporal variability highlights the role of life history differences across species, resulting in a mean shift in population growth rate, as a potentially more important driver than aspects of site and environment that may relate more to temporal changes in population growth rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availibility

R code is available on figshare at https://doi.org/10.6084/m9.figshare.21217709. The NEON data should be cited directly if used, as NEON (National Ecological Observatory Network). Ground beetles sampled from pitfall traps, 2013–2021. https://doi.org/10.48443/tx5f-dy17. Dataset accessed from https://data.neonscience.org.

References

  • Arnoldi JF, Loreau M, Haegeman B (2019) The inherent multidimensionality of temporal variability: how common and rare species shape stability patterns. Ecol Lett 22(10):1557–1567

    Article  PubMed  PubMed Central  Google Scholar 

  • Bjørnstad ON, Grenfell BT (2001) Noisy clockwork: time series analysis of population fluctuations in animals. Science 293(5530):638–643

    Article  PubMed  Google Scholar 

  • Boyce MS, Haridas CV, Lee CT, Group NSDW et al (2006) Demography in an increasingly variable world. Trends Ecol Evol 21(3):141–148

    Article  PubMed  Google Scholar 

  • Brännström Å, Sumpter DJ (2005) The role of competition and clustering in population dynamics. Proc R Soc B Biol Sci 272(1576):2065–2072

    Article  Google Scholar 

  • Breton LM, Addicott JF (1992) Density-dependent mutualism in an aphid-ant interaction. Ecology 73(6):2175–2180

    Article  Google Scholar 

  • Chamberlain S, Szocs E (2013) taxize - taxonomic search and retrieval in R. F1000Research. http://f1000research.com/articles/2-191/v2

  • Chisholm RA, Condit R, Rahman KA, Baker PJ, Bunyavejchewin S, Chen YY, Chuyong G, Dattaraja H, Davies S, Ewango CE et al (2014) Temporal variability of forest communities: empirical estimates of population change in 4000 tree species. Ecol Lett 17(7):855–865

    Article  PubMed  Google Scholar 

  • Clark AT, Arnoldi JF, Zelnik YR, Barabas G, Hodapp D, Karakoç C, König S, Radchuk V, Donohue I, Huth A et al (2021) General statistical scaling laws for stability in ecological systems. Ecol Lett 24(7):1474–1486

    Article  PubMed  Google Scholar 

  • Dallas T, Melbourne BA, Legault G, Hastings A (2021) Initial abundance and stochasticity influence competitive outcome in communities. J Anim Ecol 90(7):1691–1700

    Article  PubMed  Google Scholar 

  • Dallas TA, Kramer AM (2022) Temporal variability in population and community dynamics. Ecology 103(2):e03577

    Article  PubMed  Google Scholar 

  • Den Boer P (1970) On the significance of dispersal power for populations of carabid-beetles (Coleoptera, Carabidae). Oecologia 4(1):1–28

    Article  ADS  Google Scholar 

  • Ergon T, Lambin X, Stenseth NC (2001) Life-history traits of voles in a fluctuating population respond to the immediate environment. Nature 411(6841):1043–1045

    Article  ADS  CAS  PubMed  Google Scholar 

  • Fernández-Martínez M, Vicca S, Janssens IA, Carnicer J, Martín-Vide J, Peñuelas J (2018) The consecutive disparity index, D: a measure of temporal variability in ecological studies. Ecosphere 9(12)

  • Forcada J, Trathan PN, Murphy EJ (2008) Life history buffering in Antarctic mammals and birds against changing patterns of climate and environmental variation. Glob Change Biol 14(11):2473–2488

    Article  ADS  Google Scholar 

  • Fountain-Jones NM, Baker SC, Jordan GJ (2015) Moving beyond the guild concept: developing a practical functional trait framework for terrestrial beetles. Ecol Entomol 40(1):1–13

    Article  Google Scholar 

  • Hakspiel-Segura C, Martínez-López A, Delgado-Contreras JA, Robinson CJ, Gómez-Gutiérrez J (2022) Temporal variability of satellite chlorophyll-a as an ecological resilience indicator in the central region of the gulf of California. Progress in Oceanography p 102825

  • Hart EM, Bell K (2015) prism: download data from the Oregon prism project. https://doi.org/10.5281/zenodo.33663, https://github.com/ropensci/prism, r package version 0.0.6

  • Hijmans RJ (2021) geosphere: spherical trigonometry. https://CRAN.R-project.org/package=geosphere. r package version 1.5-14

  • Hudson PJ, Newborn D, Dobson AP (1992) Regulation and stability of a free-living host-parasite system: Trichostrongylus tenuis in red grouse. i. monitoring and parasite reduction experiments. J Anim Ecol pp 477–486

  • Inchausti P, Halley J (2002) The long-term temporal variability and spectral colour of animal populations. Evol Ecol Res 4(7):1033–1048

    Google Scholar 

  • Kao RH, Gibson CM, Gallery RE, Meier CL, Barnett DT, Docherty KM, Blevins KK, Travers PD, Azuaje E, Springer YP et al (2012) Neon terrestrial field observations: designing continental-scale, standardized sampling. Ecosphere 3(12):1–17

    Article  Google Scholar 

  • Kareiva P (1990) Population dynamics in spatially complex environments: theory and data. Philos Trans R Soc Lond B Biol Sci 330(1257):175–190

    Article  ADS  Google Scholar 

  • Koons DN, Pavard S, Baudisch A, Metcalf Jessica EC (2009) Is life-history buffering or lability adaptive in stochastic environments? Oikos 118(7):972–980

    Article  ADS  Google Scholar 

  • Krebs CJ (2013) Population fluctuations in rodents. In: Population Fluctuations in Rodents, University of Chicago Press

  • Kremer CT, Fey SB, Arellano AA, Vasseur DA (2018) Gradual plasticity alters population dynamics in variable environments: thermal acclimation in the green alga Chlamydomonas reinhartdii. Proc R Soc B Biol Sci 285(1870):20171942

    Article  Google Scholar 

  • Le Coeur C, Yoccoz NG, Salguero-Gómez R, Vindenes Y (2022) Life history adaptations to fluctuating environments: combined effects of demographic buffering and lability. Ecol Lett 25(10):2107–2119

    Article  PubMed  PubMed Central  Google Scholar 

  • Lövei GL, Sunderland KD (1996) Ecology and behavior of ground beetles (Coleoptera: Carabidae). Ann Rev Entomol 41(1):231–256

    Article  Google Scholar 

  • Lundberg P, Ranta E, Ripa J, Kaitala V (2000) Population variability in space and time. Trends Ecol Evol 15(11):460–464

    Article  CAS  PubMed  Google Scholar 

  • Majeková M, de Bello F, Doležal J, Lepš J (2014) Plant functional traits as determinants of population stability. Ecology 95(9):2369–2374

    Article  Google Scholar 

  • Marrec R, Caro G, Miguet P, Badenhausser I, Plantegenest M, Vialatte A, Bretagnolle V, Gauffre B (2017) Spatiotemporal dynamics of the agricultural landscape mosaic drives distribution and abundance of dominant carabid beetles. Landsc Ecol 32:2383–2398

    Article  Google Scholar 

  • Martin J, Royle JA, Mackenzie DI, Edwards HH, Kery M, Gardner B (2011) Accounting for non-independent detection when estimating abundance of organisms with a Bayesian approach. Methods Ecol Evol 2(6):595–601

    Article  Google Scholar 

  • McCann KS (2000) The diversity-stability debate. Nature 405(6783):228–233

    Article  CAS  PubMed  Google Scholar 

  • Melbourne BA, Hastings A (2008) Extinction risk depends strongly on factors contributing to stochasticity. Nature 454(7200):100

    Article  ADS  CAS  PubMed  Google Scholar 

  • Meseguer-Ruiz O, Olcina Cantos J, Sarricolea P, Martín-Vide J (2017) The temporal fractality of precipitation in mainland Spain and the Balearic islands and its relation to other precipitation variability indices. Int J Climatol 37(2):849–860

    Article  Google Scholar 

  • Niemelä J (2001) Carabid beetles (Coleoptera: Carabidae) and habitat fragmentation: a review. Eur J Entomol 98(2):127–132

    Article  Google Scholar 

  • Oro D (2013) Grand challenges in population dynamics. Front Ecol Evol 1:2

    Article  Google Scholar 

  • Ovaskainen O, Cornell SJ (2006) Space and stochasticity in population dynamics. Proc Nat Acad Sci 103(34):12781–12786

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ovaskainen O, Meerson B (2010) Stochastic models of population extinction. Trends Ecol Evol 25(11):643–652

    Article  PubMed  Google Scholar 

  • Pironon S, Papuga G, Villellas J, Angert AL, García MB, Thompson JD (2017) Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm. Biol Rev 92(4):1877–1909

    Article  PubMed  Google Scholar 

  • Pironon S, Villellas J, Thuiller W, Eckhart VM, Geber MA, Moeller DA, García MB (2018) The Hutchinsonian niche as an assemblage of demographic niches: implications for species geographic ranges. Ecography 41(7):1103–1113

    Article  ADS  Google Scholar 

  • Pizzolotto R, Mazzei A, Bonacci T, Scalercio S, Iannotta N, Brandmayr P (2018) Ground beetles in Mediterranean olive agroecosystems: their significance and functional role as bioindicators (Coleoptera, Carabidae). PloS one 13(3)

  • PRISM Climate Group (2023) Oregon state university, https://prism.oregonstate.edu. Data created 4 Feb 2014, Accessed Jan 2023

  • Rainio J, Niemelä J (2003) Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers Conserv 12(3):487–506

    Article  Google Scholar 

  • Revell LJ (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223

    Article  Google Scholar 

  • Sprössig C, Dziock F, Buchholz S (2022) Changes in carabid diversity indicate successful restoration of riparian habitats. Int Rev Hydrobiol 107(1–2):68–75

    Article  Google Scholar 

  • Tilman D, Lehman CL, Bristow CE (1998) Diversity-stability relationships: statistical inevitability or ecological consequence? Am Nat 151(3):277–282

    Article  CAS  PubMed  Google Scholar 

  • Tuljapurkar S (1982) Population dynamics in variable environments. ii. correlated environments, sensitivity analysis and dynamics. Theor Popul Biol 21(1):114–140

  • Tuljapurkar S (1989) An uncertain life: demography in random environments. Theor Popul Biol 35(3):227–294

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  • Tuljapurkar S (2013) Population dynamics in variable environments, vol 85. Springer Science & Business Media

  • Vergotti M, Fernández-Martínez M, Kefauver S, Janssens I, Peñuelas J (2019) Weather and trade-offs between growth and reproduction regulate fruit production in European forests. Agric For Meteorol 279

  • Wang S, Haegeman B, Loreau M (2015) Dispersal and metapopulation stability. PeerJ 3:e1295

    PubMed  Google Scholar 

Download references

Acknowledgements

The National Ecological Observatory Network is a program sponsored by the National Science Foundation and operated under a cooperative agreement by Battelle. This material is based in part upon work supported by the National Science Foundation through the NEON Program. This work benefited greatly from conversations with Carl Boettiger.

Funding

This work has been performed with funding to Tad Dallas from the National Science Foundation (NSF-DEB-2017826) Macrosystems Biology and NEON-Enabled Science program.

Author information

Authors and Affiliations

Authors

Contributions

Tad Dallas performed the analysis and wrote the initial draft. Cleber Ten Caten and Lauren Holian helped form the initial idea, provided feedback on analysis, and contributed to manuscript writing and editing.

Corresponding author

Correspondence to Tad A. Dallas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2.23 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dallas, T.A., Caten, C.T. & Holian, L.A. Temporal variability of carabid beetles as a function of geography, environment, and species. Theor Ecol 17, 35–43 (2024). https://doi.org/10.1007/s12080-023-00573-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12080-023-00573-1

Keywords

Navigation