Skip to main content
Log in

Magnetic Properties of Source Regions of CMEs and DH Type II Radio Bursts

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

The Sun is a dynamic star that exhibits various phenomena, including solar flares, coronal mass ejections (CMEs), and Type II radio bursts. CMEs are large-scale eruptions of plasma and magnetic field from the Sun that can disrupt the interplanetary medium and the Earth’s magnetic field. Type II radio bursts are radio emissions associated with shocks generated by the CMEs. Only a few CMEs are associated with Type II radio bursts and the reasons for the absence of these bursts are still under debate. The magnetic properties of source active regions (ARs) from where CMEs with and without decameter-hectometer (DH) Type II radio bursts originate are investigated. Relations between the speed of CMEs and the source region properties are also obtained for these two groups of events (with and without radio bursts). The data from the Solar Dynamics Observatory (SDO) and the Radio and Plasma Wave (WAVES) Experiment on board the Wind spacecraft and the CMEs observed by the Solar and Heliospheric Observatory (SOHO) mission for the period of 2010 – 2014 in Solar Cycle 24 are utilized for this study. The statistical properties (like range, mean, median, and standard deviation) of source AR magnetic properties and the speed of the CMEs associated with DH Type II radio bursts (first group called radio loud) are found to be higher than those of CMEs without DH Type II radio bursts (second group called radio quiet). In addition, we found a positive correlation between the magnetic properties of the source AR and the speed of the CMEs with DH Type II radio bursts, but it is absent for events without DH Type II bursts. We also found that the probability of CME-streamer interaction is higher for the first group than for the second group, which shows a strong relation between the CME-streamer interaction and Type II bursts. These results reveal distinct magnetic characteristics in the source region for radio loud and radio quiet CMEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data Availability

We obtained a list of halo CMEs with their corresponding source locations observed during 2010 – 2014 by the Solar and Heliospheric Observatory (SOHO) and the Large Angle Spectrometric Coronagraph (LASCO) satellite (https://cdaw.gsfc.nasa.gov/CME_list/halo/halo.html). We collected the corresponding physical properties of CMEs reported in the online CME catalog from the Coordinated Data Analysis Workshops (CDAW) (https://cdaw.gsfc.nasa.gov/CME_list/). The information on Type II bursts associated with the flare and CME properties are obtained from the Type II radio burst catalog (https://cdaw.gsfc.nasa.gov/CME_list/radio/waves_type2.html) of the Radio and Plasma Wave Experiment (WAVES) on board the Wind spacecraft (Gopalswamy, Makela, and Yashiro, 2019).

References

  • Bothmer, V., Daglis, A.I.: 2007, Space Weather - Physics and Effects, Springer, Berlin Heidelberg, New York, ISBN 10:3-540-23907-3.

    Book  Google Scholar 

  • Bothmer, V., Schwenn, R.: 1995, The interplanetary and solar causes of major geomagnetic storms. J. Geomagn. Geoelectr. 47, 1127. DOI.

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The large angle spectroscopic coronagraph (LASCO). Solar Phys. 162, 357. DOI.

    Article  ADS  Google Scholar 

  • Cane, H.V., Sheeley, N.R. Jr., Howard, R.A.: 1987, Energetic interplanetary shocks, radio emission, and coronal mass ejections. J. Geophys. Res. 92, 9869. DOI.

    Article  ADS  Google Scholar 

  • Carley, E.P., Vilmer, N., Simoes, P.J.A., O. Fearraigh, B.: 2017, Estimation of a coronal mass ejection magnetic field strength using radio observations of gyro synchrotron radiation. Astron. Astrophys. 608, A137. DOI.

    Article  Google Scholar 

  • Cho, K.-S., Bong, S.-C., Kim, Y.-H., Moon, Y.-J., Dryer, M., Shanmugaraju, A., Lee, J., Park, Y.D.: 2008, Low coronal observations of metric type II associated CMEs by MLSO coronameters. Astron. Astrophys. 491, 873. DOI.

    Article  ADS  Google Scholar 

  • Cho, K.-S., Bong, S.-C., Moon, Y.-J., Shanmugaraju, A., Kwon, R.Y., Park, Y.D.: 2011, Relationship between multiple type II solar radio bursts and CME observed by STEREO/SECCHI. Astron. Astrophys. 530, A16. DOI.

    Article  Google Scholar 

  • Dulk, G.A., McLean, D.J.: 1978, Coronal magnetic fields. Solar Phys. 57, 279. DOI.

    Article  ADS  Google Scholar 

  • Emslie, A.G., Kucharek, H., Dennis, B.R., Gopalswamy, N., Holman, G.D., Share, G.H., Vourlidas, A., Forbes, T.G., Gallagher, P.T., Mason, G.M., Metcalf, T.R., Mewaldt, R.A., Murphy, R.J., Schwartz, R.A., Zurbuchen, T.H.: 2004, Energy partition in two solar flare/CME events. J. Geophys. Res. 109, A10104. DOI.

    Article  ADS  Google Scholar 

  • Georgoulis, M.K., Rust, D.M.: 2007, Quantitative forecasting of major solar flares. Astrophys. J. 661, L109. DOI.

    Article  ADS  Google Scholar 

  • Gopalswamy, N.: 2000, Type II solar radio bursts. In: Stone, R.G., Weiler, K.W., Goldstein, M.L., Bougeret, J.-L. (eds.) Radio Astronomy at Long Wavelengths, Geophys. Monograph Ser. 119, 123.

    Chapter  Google Scholar 

  • Gopalswamy, N.: 2006, Coronal mass ejections and type II radio bursts. In: Solar Eruptions and Energetic Particles, Geophys. Monograph Ser. 165, 207. DOI.

    Chapter  Google Scholar 

  • Gopalswamy, N.: 2016, History and development of coronal mass ejections as a key player in solar terrestrial relationship. Geosci. Lett. 3, 8. DOI.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Makela, P., Yashiro, S.: 2019, A catalog of type II radio bursts observed by wind/WAVES and their statistical properties. Sun Geosph. 14, 111. DOI.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Lara, A., Kaiser, M.L., Bougeret, J.L.: 2001, Near-Sun and near-Earth manifestations of solar eruption. J. Geophys. Res. 106, 25261. DOI.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Xie, H., Akiyama, S., Aguilar-Rodriguez, E., Kaiser, M.L., Howard, R.A., Bougeret, J.-L.: 2008, Radio-quiet fast and wide coronal mass ejections. Astrophys. J. 674, 560. DOI.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Dal Lago, A., Yashiro, S., Akiyama, S.: 2009, The expansion and radial speeds of coronal mass ejection. Cent. Eur. Astrophys. Bull. 33, 115.

    ADS  Google Scholar 

  • Kim, R.-S., Park, S.-H., Jang, S., Cho, K.-S., Lee, B.S.: 2017, Relation of CME speed and magnetic helicity in CME source regions on the Sun during the Early phase of Solar Cycles 23 and 24. Solar Phys. 292(4). DOI.

  • Koval, A., Karlický, M., Stanislavsky, A., Wang, B., Bárta, M., Gorgutsa, R.: 2021, Shock-wave radio probing of solar wind sources in coronal magnetic fields. Astrophys. J. 923, 255. DOI.

    Article  ADS  Google Scholar 

  • Koval, A., Stanislavsky, A., Karlicky, M., Wang, B., Yerin, S., Konovalenko, A., Barta, M.: 2023, Morphology of solar type II bursts caused by shock propagation through turbulents and inhomogeneous coronal plasma. Astrophys. J. 952, 51. DOI.

    Article  ADS  Google Scholar 

  • Kumari, A., Ramesh, R., Kathiravan, C., Wang, T.J.: 2017, Strength of the solar coronal magnetic field – A comparison of independent estimates using contemporaneous radio and white-light observations. Solar Phys. 292(11). DOI.

  • Kumari, A., Moroson, D.E., Kilpua, E.K.J., Daei, F.: 2023, Type II radio bursts and their association with coronal mass ejections in solar cycles 23 and 24. Astron. Astrophys. 675, 102. DOI.

    Article  ADS  Google Scholar 

  • Lara, A., Gopalswamy, N., Nunes, S., Muñoz, G., Yashiro, S.: 2003, A statistical study of CMEs associated with metric type II bursts. Geophys. Res. Lett. 30, 8016. DOI.

    Article  ADS  Google Scholar 

  • Leblanc, Y., Dulk, G.A., Bougeret, J.-L.: 1998, Tracing the electron density from the corona to 1 AU. Solar Phys. 183, 165. DOI.

    Article  ADS  Google Scholar 

  • Ma, S., Raymond, J.C., Golub, L., Lin, J., Chen, H., Grigis, P., Testa, P., Long, D.: 2011, Observations and interpretation of a low coronal shock wave observed in the EUV by the SDO/AIA. Astrophys. J. 738, 160. DOI.

    Article  ADS  Google Scholar 

  • Majumdar, S., Patel, R., Pant, V., Dipankar, B., Rawat, A., Pradhan, A., Paritosh, S.: 2023, A coronal mass ejection source region catalog and their associated properties. Astrophys. J. Suppl. Ser. 268, 38. DOI.

    Article  ADS  Google Scholar 

  • Murray, S.A., Guerra, J.A., Zucca, P., Park, S.H., Carley, E.P., Gallagher, P.T., Vilmer, N., Bothmer, V.: 2018, Connecting coronal mass ejections to their solar active region sources: combining results from the HELCATS and FLARECAST projects. Solar Phys. 293(4), 60. DOI.

    Article  ADS  Google Scholar 

  • Pal, S., Nandy, D., Srivastava, V., Gopalswamy, N., Suman, P.: 2018, Dependence of coronal mass ejection properties on their solar source active region characteristics and associated flare reconnection flux. Astrophys. J. 865, 4. DOI.

    Article  ADS  Google Scholar 

  • Patel, B.D., Joshi, B., Cho, K.-S., Kim, R.-S.: 2021, DH type II radio bursts during solar cycles 23 and 24: frequency-dependent classification and their flare-CME associations. Solar Phys. 296, 142. DOI.

    Article  ADS  Google Scholar 

  • Patel, B.D., Joshi, B., Cho, K.-S., Kim, R.-S., Moon, Y.J.: 2022, Near-Earth interplanetary coronal mass ejections and their association with DH type II radio bursts during solar cycles 23 and 24. Solar Phys. 297, 139. DOI.

    Article  ADS  Google Scholar 

  • Payne-Scott, R., Yabsley, D.E., Bolton, J.G.: 1947, Relative times of arrival of bursts of solar noise on different radio frequencies. Nature 160, 256. DOI.

    Article  ADS  Google Scholar 

  • Prakash, O., Umapathy, S., Shanmugaraju, A., Pappa kalaivani, P., Vršnak, B.: 2012, Characteristics of DH type II bursts, CMEs and flares with respect to the acceleration of CMEs. Astrophys. Space Sci. 337(1), 47. DOI. 0817–4.

    Article  ADS  Google Scholar 

  • Reiner, M.J., Kaiser, M.L.: 1999, High-frequency type II radio emissions associated with shocks driven by coronal mass ejections. J. Geophys. Res. 104, 16979. DOI.

    Article  ADS  Google Scholar 

  • Reiner, M.J., Kaiser, M.L., Bougeret, J.-L.: 2007, Coronal and interplanetary propagation of CME/shocks from radio, in situ and white-light observations. Astrophys. J. 663(2), 1369. DOI.

    Article  ADS  Google Scholar 

  • Saito, K., Poland, A.I., Munro, R.H.: 1977, A study of the background corona near solar minimum. Solar Phys. 55, 121. DOI.

    Article  ADS  Google Scholar 

  • Schrijver, C.J.: 2007, A characteristic magnetic field pattern associated with all major solar flares and its use in flare forecasting. Astrophys. J. Lett. 655, L117. DOI.

    Article  ADS  Google Scholar 

  • Selvarani, G., Shanmugaraju, A., Vrsnak, B., Bendict Lawrance, M.: 2017, Investigation on M-class flare-associated coronal mass ejections with and without DH type II radio bursts. Solar Phys. 292, 74. DOI.

    Article  ADS  Google Scholar 

  • Shanmugaraju, A., Moon, Y.-J., Vrsnak, B.: 2009, Type II radio bursts with high and low starting frequencies. Solar Phys. 254, 297. DOI.

    Article  ADS  Google Scholar 

  • Shanmugaraju, A., Suresh, K., Vasanth, V., Selvarani, G., Umapathy, S.: 2018, Interplanetary type II radio bursts and their association with CMEs and flares. Astrophys. Space Sci. 363(6), 126. DOI.

    Article  ADS  Google Scholar 

  • Syed Ibrahim, M., Ebenezer, E., Shanmugaraju, A.: 2023, Comparison between radio loud and radio quiet fast CMEs: a reason for radio quietness. Solar Phys. 298, 59. DOI.

    Article  ADS  Google Scholar 

  • Syed Ibrahim, M., Uddin, W., Joshi, B., Chandra, R., Awasthi, A.: 2022, Investigation of two coronal mass ejections from circular ribbon source region: Origin, Sun–Earth propagation and geo-effectiveness. Res. Astron. Astrophys. 21, 318. DOI.

    Article  Google Scholar 

  • Thernisien, A., Vourlidas, A., Howard, R.A.: 2009, Forward modeling of coronal mass ejections using STEREO/SECCHI data. Solar Phys. 256, 111. DOI.

    Article  ADS  Google Scholar 

  • Tiwari, S.K., Falconer, D.A., Moore, R.L., Venkatakrishnan, P., Winebarger, A.R., Khazanov, I.G.: 2015, Near-Sun speed of CMEs and the magnetic non-potentiality of their source active regions. Geophys. Res. Lett. 42, 5702. DOI.

    Article  ADS  Google Scholar 

  • Toriumi, S., Schrijver, C.J., Harra, L.K., Hudson, H., Nagashima, K.: 2017, Magnetic properties of solar active regions that govern large solar flares and eruptions. Astrophys. J. 834, 56. DOI.

    Article  ADS  Google Scholar 

  • Török, T., Kliem, B.: 2007, Numerical simulations of fast and slow coronal mass ejections. Astron. Nachr. 328, 743. DOI.

    Article  ADS  Google Scholar 

  • Vrsnak, S.: 2008, Processes and mechanisms governing the initiation and propagation of CMEs. Ann. Geophys. 26, 3089. DOI.

    Article  ADS  Google Scholar 

  • Wagner, W.J., MacQueen, R.M.: 1983, The excitation of type II radio bursts in the corona. Astron. Astrophys. 120, 136. (ISSN 0004-6361).

    ADS  Google Scholar 

  • Warmuth, A., Mann, G.: 2005, A model of the Alfven speed in the solar corona. Astron. Astrophys. 435, 1123. DOI.

    Article  ADS  Google Scholar 

  • Wild, J.P., McCready, L.L.: 1950, Observations of the spectrum of high-intensity solar radiation at metre wavelengths. I. The apparatus and spectral types of solar burst observed. Austral. J. Chem. 3, 387. DOI.

    Article  ADS  Google Scholar 

  • Wild, J.P., Murray, J.D., Rowe, W.C.: 1953, Evidence of harmonics in the spectrum of a solar radio outburst. Nature 172(4377), 533. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Department of Science and Technology – the Science and Engineering Research Board (DST-SERB), Government of India, for their support (F.No.CRG/2021/007496). We also acknowledge the open data policy of several online catalogues mentioned in this research paper. The CME catalogue is generated and maintained at the CDAW Data Center by NASA and The Catholic University of America in cooperation with the Naval Research Laboratory. SOHO is a project of international cooperation between ESA and NASA. We thank the reviewer and the editor for useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

PV and AS wrote the main manuscript text and SA prepared the Section 3.4. All authors reviewed the manuscript.

Corresponding author

Correspondence to P. Vijayalakshmi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayalakshmi, P., Shanmugaraju, A. & Aswin Amirtha Raj, S. Magnetic Properties of Source Regions of CMEs and DH Type II Radio Bursts. Sol Phys 298, 144 (2023). https://doi.org/10.1007/s11207-023-02234-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-023-02234-2

Keywords

Navigation