Skip to main content
Log in

Numerical simulation of mechanical and fracture behavior of composite rock containing weak interlayers

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Uniaxial compression simulation tests were conducted on composite rock containing weak interlayers, investigating the influence of the number of weak interlayers and dip angle (θ = 0°90°) on the physical and mechanical parameters, anisotropy, and failure modes of the rock. The results demonstrate a correlation between the uniaxial compressive strength and elastic modulus with the number of weak interlayers and dip angle. The axial strain of the peak strength generally increases with an augmented number of weak interlayers, exhibiting a pattern of increase, decrease, and subsequent increase with varying dip angles. Microcracks predominantly originate in the interface and loading plate area, extending to the weak interlayer and adjacent regions, forming continuous fractures until the rock undergoes complete failure. The number and dip angle of the interlayer not only impact the physical properties but also govern the failure mode of the rock. The increase in weak interlayers shifts the postpeak curve from brittle to ductile damage, resulting in diverse final failure modes at different dip angles. A total of five distinct final failure modes were identified by examining the macroscopic fracture surface of the rock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jeon S, Kim J, Seo Y et al (2004) Effect of a fault and weak plane on the stability of a tunnel in rock-a scaled model test and numerical analysis. Int J Rock Mech Min Sci. https://doi.org/10.1016/j.ijrmms.2003.12.021

    Article  Google Scholar 

  2. Liu J, Li Q, Wang X et al (2022) Dynamic multifractal characteristics of acoustic emission about composite coal-rock samples with different strength rock. Chaos Solitons Fract 164:112725. https://doi.org/10.1016/j.chaos.2022.112725

    Article  Google Scholar 

  3. Li Y, Liu W, Yang C et al (2014) Experimental investigation of mechanical behavior of bedded rock salt containing inclined interlayer. Int J Rock Mech Min Sci 69:39–49. https://doi.org/10.1016/j.ijrmms.2014.03.006

    Article  Google Scholar 

  4. Tien Y, Tsao P (2000) Preparation and mechanical properties of artificial transversely isotropic rock. Int J Rock Mech Min Sci 37(6):1001–1012. https://doi.org/10.1016/S1365-1609(00)00024-1

    Article  Google Scholar 

  5. Tien Y, Kuo M, Juang C (2006) An experimental investigation of the failure mechanism of simulated transversely isotropic rocks. Int J Rock Mech Min Sci 43:1163–1181. https://doi.org/10.1016/j.ijrmms.2006.03.011

    Article  Google Scholar 

  6. Luo P, Li D, Ma J et al (2023) Experimental investigation on mechanical properties and deformation mechanism of soft-hard interbedded rock-like material based on digital image correlation. J Market Res 24:1922–1938. https://doi.org/10.1016/j.jmrt.2023.03.145

    Article  Google Scholar 

  7. Shen P, Tang H, Zhang B et al (2021) Investigation on the fracture and mechanical behaviors of simulated transversely isotropic rock made of two interbedded materials. Eng Geol 286(2):106058. https://doi.org/10.1016/j.enggeo.2021.106058

    Article  Google Scholar 

  8. Zhang G, Li Y, Yang C et al (2012) Physical simulation of deformation and failure mechanism of soft and hard interberdded salt rocks. Chin J Rock Mech Eng 31(9):1813–1820

    Google Scholar 

  9. Zhao Z, Liu H, Ma Q et al (2023) Micro-macro damage, deterioration and cracking of heterogeneous composite rock masses with non-penetrating cracks under uniaxial compression. Theoret Appl Fract Mech 125:103919. https://doi.org/10.1016/j.tafmec.2023.103919

    Article  Google Scholar 

  10. Cheng J, Yang S, Ying P et al (2018) Experimental study of the deformation and strength behavior of composite rock specimens in unloading confining pressure test. J China Univ Min Technol 47(6):1233–1242. https://doi.org/10.13247/j.cnki.jcumt.000945

    Article  Google Scholar 

  11. Chen J, Gu S, Zhou X (2023) The effects of weak interlayers on the dynamic mechanical properties and failure behaviours of rocks: a combined numerical and experimental analysis. Int J Impact Eng 2023:104680. https://doi.org/10.1016/j.ijimpeng.2023.104680

    Article  Google Scholar 

  12. Yao C, Li Y, Jiang Q et al (2015) Mesoscopic model of failure process of interlayered rock under compression. Chin J Rock Mech Eng 34(8):1542–1551. https://doi.org/10.13722/j.cnki.jrme.2014.0387

    Article  Google Scholar 

  13. Li A, Shao G et al (2018) Uniaxial compression test and numerical simulation for alternatively soft and hard interbedded rock mass. J Hohai Univ (Nat Sci) 46(6):6. https://doi.org/10.3876/j.issn.1000-1980.2018.06.010

    Article  Google Scholar 

  14. Li A, Shao G, Fan H et al (2014) Investigation of mechanical properties of soft and hard interbedded composit rock mass based on meso-level heterogeneity. Chin J Rock Mech Eng 2014(S1):3042–3049. https://doi.org/10.13722/j.cnki.jrme.2014.s1.064

    Article  Google Scholar 

  15. Chen Y, Zhang Y, Li K et al (2017) Distinct element numerical analysis of failure process of interlayered rock subjected to uniaxial compression. J Min Saf Eng 34(4):796–802. https://doi.org/10.13545/j.cnki.jmse.2017.04.027

    Article  Google Scholar 

  16. Liang Z, Tang C, Li H et al (2005) A numerical study on failure process of transversely isotropic rock subjected to uniaxial compression. Rock Soil Mech 26(1):57–62. https://doi.org/10.16285/j.rsm.2005.01.013

    Article  Google Scholar 

  17. He Z, Tang C, Li H et al (2010) Test and numerical simulation for stratified rock mass under uniaxial compression. J Central South Univ (Sci Technol) 41(5):1906–1912

    Google Scholar 

  18. Kang Y, GU J, Wei M et al (2023) Mechanical properties and acoustic emission characteristics of soft-hard interbedded rocks under different loading rates. J Northeastern Univ (Nat Sci) 44(3):399–407. https://doi.org/10.12068/j.issn.1005-3026.2023.03.013

    Article  Google Scholar 

  19. Huang F, Zhu H, Xu Q et al (2013) The effect of weak interlayer on the failure pattern of rock mass around tunnel–Scaled model tests and numerical analysis. Tunn Undergr Space Technol 35:207–218. https://doi.org/10.1016/j.tust.2012.06.014

    Article  Google Scholar 

  20. Ding S, Jing H, Chen K et al (2017) Stress evolution and support mechanism of a bolt anchored in a rock mass with a weak interlayer. Int J Min Sci Technol 27(3):573–580. https://doi.org/10.1016/j.ijmst.2017.03.024

    Article  Google Scholar 

  21. Zhao JS, Feng XT, Jiang Q et al (2018) Microseismicity monitoring and failure mechanism analysis of rock masses with weak interlayer zone in underground intersecting chambers: a case study from the Baihetan Hydropower Station, China. Eng Geol 245:44–60. https://doi.org/10.1016/j.enggeo.2018.08.006

    Article  Google Scholar 

  22. Zhao D, Xia Y, Zhang C et al (2022) Failure modes and excavation stability of large-scale columnar jointed rock masses containing interlayer shear weakness zones. Int J Rock Mech Min Sci 159:105222. https://doi.org/10.1016/j.ijrmms.2022.105222

    Article  Google Scholar 

  23. Ivars D, Pierce M, Darcel C et al (2011) The synthetic rock mass approach for jointed rock mass modelling. Int J Rock Mech Min Sci 48(2):219–244. https://doi.org/10.1016/j.ijrmms.2010.11.014

    Article  Google Scholar 

  24. Wu S, Zhou Y, Gao L et al (2013) Application of epuivalent rock mass technique to rock mass engineering. Chin J Rock Mech Eng 29(7):1435–1441

    Google Scholar 

  25. Zhou Y, Wu S, Wang L et al (2013) Application of equivalent rock mass technique to mesoscopic analysis of fracture mechanism of rock specimen containing two intermittent joint. Rock Soil Mech 34(10):2801–2809. https://doi.org/10.16285/j.rsm.2013.10.00

    Article  Google Scholar 

  26. Jiang M, Fang W, Si M et al (2015) (2015) Calibration of micro-parameters of parallel bonded model for rocks. J ShanDong Univ (Eng Sci) 04:53–59. https://doi.org/10.6040/j.issn.1672-3961.0.2014.183

    Article  Google Scholar 

  27. Potyondy D, Cundall P (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China through the Project No.52934003. The authors also acknowledge the reviewer’s work contributing to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangyang Nian.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nian, Y., Wu, S. & Han, S. Numerical simulation of mechanical and fracture behavior of composite rock containing weak interlayers. Comp. Part. Mech. (2023). https://doi.org/10.1007/s40571-023-00696-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40571-023-00696-6

Keywords

Navigation