Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structure and growth of plant cell walls

Abstract

Plant cells build nanofibrillar walls that are central to plant growth, morphogenesis and mechanics. Starting from simple sugars, three groups of polysaccharides, namely, cellulose, hemicelluloses and pectins, with very different physical properties are assembled by the cell to make a strong yet extensible wall. This Review describes the physics of wall growth and its regulation by cellular processes such as cellulose production by cellulose synthase, modulation of wall pH by plasma membrane H+-ATPase, wall loosening by expansin and signalling by plant hormones such as auxin and brassinosteroid. In addition, this Review discusses the nuanced roles, properties and interactions of cellulose, matrix polysaccharides and cell wall proteins and describes how wall stress and wall loosening cooperatively result in cell wall growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spatial patterns of cell wall growth.
Fig. 2: Conceptual framework for wall growth.
Fig. 3: Dominant polysaccharides of the growing cell wall.
Fig. 4: Molecular architecture of the primary cell wall.
Fig. 5: Cellular processes supporting wall growth.
Fig. 6: How wall stresses function in wall growth.
Fig. 7: Examples of hormonal regulation of cell wall growth.

Similar content being viewed by others

References

  1. Bidhendi, A. J. & Geitmann, A. Finite element modeling of shape changes in plant cells. Plant. Physiol. 176, 41–56 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Coen, E. & Cosgrove, D. J. The mechanics of plant morphogenesis. Science 379, eade8055 (2023). A concise overview of mechanics, from fibres to fibre networks to tissues and organs, touching on some of the open questions and divergent views in plant mechanobiology.

    Article  CAS  PubMed  Google Scholar 

  3. Echevin, E. et al. Growth and biomechanics of shoot organs. J. Exp. Bot. 70, 3573–3585 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, Y. et al. Molecular insights into the complex mechanics of plant epidermal cell walls. Science 372, 706–711 (2021). This paper uses coarse-grained molecular dynamics to simulate the physical properties of cellulose, xyloglucan and hemicellulose and to investigate wall assembly and wall mechanics.

    Article  CAS  PubMed  Google Scholar 

  5. Jarvis, M. C. Forces on and in the cell walls of living plants. Plant Physiol., kiad387 https://doi.org/10.1093/plphys/kiad387 (2023).

  6. Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. 115, 6506–6511 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Liao, Y. et al. A sustainable wood biorefinery for low-carbon footprint chemicals production. Science 367, 1385–1390 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Parre, E. & Geitmann, A. Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense. Planta 220, 582–592 (2005). This paper shows that pectin viscoelasticity plays a big role in the growth of pollen tubes, whose walls are pectin rich and cellulose poor and that regions of de-esterified pectin are mechanically stiffer.

    Article  CAS  PubMed  Google Scholar 

  10. Winship, L. J., Rosen, G. A. & Hepler, P. K. Apical pollen tube wall curvature correlates with growth and indicates localized changes in the yielding of the cell wall. Protoplasma 258, 1347–1358 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Miller, K., Strychalski, W., Nickaeen, M., Carlsson, A. & Haswell, E. S. In vitro experiments and kinetic models of Arabidopsis pollen hydration mechanics show that MSL8 is not a simple tension-gated osmoregulator. Curr. Biol. 32, 2921–2934.e3 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Cosgrove, D. J. Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant. Cell 9, 1031–1041 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cosgrove, D. J. Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls. Planta 177, 121–130 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Yamamoto, R., Shinozak, K. & Masuda, Y. Stress-relaxation properties of plant cell walls with special reference to auxin action. Plant. Cell Physiol. 11, 947–956 (1970).

    Article  CAS  Google Scholar 

  15. Cosgrove, D. J. Wall relaxation in growing stems: comparison of four species and assessment of measurement techniques. Planta 171, 266–278 (1987).

    Article  PubMed  Google Scholar 

  16. Verbancic, J., Lunn, J. E., Stitt, M. & Persson, S. Carbon supply and the regulation of cell wall synthesis. Mol. Plant. 11, 75–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Vaahtera, L., Schulz, J. & Hamann, T. Cell wall integrity maintenance during plant development and interaction with the environment. Nat. Plants 5, 924–932 (2019).

    Article  PubMed  Google Scholar 

  18. Frankova, L. & Fry, S. C. Biochemistry and physiological roles of enzymes that ‘cut and paste’ plant cell-wall polysaccharides. J. Exp. Bot. 64, 3519–3550 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Spartz, A. K. et al. SAUR inhibition of PP2C-D phosphatases activates plasma membrane H+-ATPases to promote cell expansion in arabidopsis. Plant. Cell 26, 2129–2142 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, Y., Zeng, H. Q., Xu, F. Y., Yan, F. & Xu, W. F. H. H+-ATPases in plant growth and stress responses. Annu. Rev. Plant. Biol. 73, 495–521 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Haruta, M., Sabat, G., Stecker, K., Minkoff, B. B. & Sussman, M. R. A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343, 408–411 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Du, M., Spalding, E. P. & Gray, W. M. Rapid auxin-mediated cell expansion. Annu. Rev. Plant. Biol. 71, 379–402 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cosgrove, D. J. Catalysts of plant cell wall loosening. F1000Res. 5, F1000 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Silk, W. K. & Bogeat-Triboulot, M.-B. Deposition rates in growing tissue: implications for physiology, molecular biology, and response to environmental variation. Plant. Soil. 374, 1–17 (2014).

    Article  CAS  Google Scholar 

  25. Haruta, M. & Sussman, M. R. Ligand receptor-mediated regulation of growth in plants. Curr. Top. Dev. Biol. 123, 331–363 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Pérez-Henríquez, P. & Yang, Z. Extranuclear auxin signaling: a new insight into auxin’s versatility. N. Phytol. 237, 1115–1121 (2023).

    Article  Google Scholar 

  27. True, J. H. & Shaw, S. L. Exogenous auxin induces transverse microtubule arrays through transport inhibitor response1/auxin signaling f-box receptors 1. Plant. Physiol. 182, 892–907 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Adamowski, M., Li, L. & Friml, J. Reorientation of cortical microtubule arrays in the hypocotyl of Arabidopsis thaliana is induced by the cell growth process and independent of auxin signaling. Int. J. Mol. Sci. 20, 3337 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baskin, T. I. Auxin inhibits expansion rate independently of cortical microtubules. Trends Plant. Sci. 20, 471–472 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Xie, Y. et al. FERONIA receptor kinase integrates with hormone signaling to regulate plant growth, development, and responses to environmental stimuli. Int. J. Mol. Sci. 23, 3730 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hofte, H. The yin and yang of cell wall integrity control: brassinosteroid and FERONIA signaling. Plant. Cell Physiol. 56, 224–231 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Malivert, A. & Hamant, O. Why is FERONIA pleiotropic? Nat. Plants 9, 1018–1025 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Evered, C., Majevadia, B. & Thompson, D. S. Cell wall water content has a direct effect on extensibility in growing hypocotyls of sunflower (Helianthus annuus L.). J. Exp. Bot. 58, 3361–3371 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Edelmann, H. G. Water potential modulates extensibility of rye coleoptile cell-walls. Botanica Acta 108, 374–380 (1995).

    Article  CAS  Google Scholar 

  35. Muhammad Aslam, M. et al. Mechanisms of abscisic acid-mediated drought stress responses in plants. Int. J. Mol. Sci. 23, 1084 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Doblin, M. S., Pettolino, F. & Bacic, A. Plant cell walls: the skeleton of the plant world. Funct. Plant. Biol. 37, 357–381 (2010).

    Article  CAS  Google Scholar 

  37. Lampugnani, E. R., Khan, G. A., Somssich, M. & Persson, S. Building a plant cell wall at a glance. J. Cell Sci. 131, jcs207373 (2018).

    Article  PubMed  Google Scholar 

  38. Carpita, N. C. & Gibeaut, D. M. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant. J. 3, 1–30 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Cosgrove, D. J. Building an extensible cell wall. Plant. Physiol. 189, 1246–1277 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Park, Y. B. & Cosgrove, D. J. A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. Plant. Physiol. 158, 1933–1943 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hayashi, T. Xyloglucans in the primary cell wall. Annu. Rev. Plant. Phys. Plant. Mol. Bio 40, 139–168 (1989).

    Article  CAS  Google Scholar 

  42. Fry, S. C. Cellulases, hemicelluloses and auxin-stimulated growth: a possible relationship. Physiologia Plant. 75, 532–536 (1989).

    Article  CAS  Google Scholar 

  43. McCann, M. C. & Roberts, K. in Cytoskeletal Basis of Plant Growth and Form (ed. Lloyd C.) 109–129 (Academic Press, 1991).

  44. Probine, M. C. & Barber, N. F. The structure and plastic properties of the cell wall of Nitella in relation to extension growth. Aust. J. Biol. Sci. 19, 439–457 (1966).

    Article  Google Scholar 

  45. Oliveri, H., Traas, J., Godin, C. & Ali, O. Regulation of plant cell wall stiffness by mechanical stress: a mesoscale physical model. J. Math. Biol. 78, 625–653 (2019).

    Article  PubMed  Google Scholar 

  46. Cavalier, D. M. et al. Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component. Plant. Cell 20, 1519–1537 (2008). This study showed that genetic deletion of xyloglucan had remarkably little effect on plant development. This undermined the concept that cellulose is mechanically linked by xyloglucan, which was the dominant wall model at that time.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Park, Y. B. & Cosgrove, D. J. Changes in cell wall biomechanical properties in the xyloglucan-deficient xxt1/xxt2 mutant of Arabidopsis. Plant. Physiol. 158, 465–475 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Aryal, B. et al. Interplay between cell wall and auxin mediates the control of differential cell elongation during apical hook development. Curr. Biol. 30, 1733–1739.e3 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Kim, S.-J. et al. The synthesis of xyloglucan, an abundant plant cell wall polysaccharide, requires CSLC function. Proc. Natl Acad. Sci. USA 117, 20316–20324 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, T., Tang, H., Vavylonis, D. & Cosgrove, D. J. Disentangling loosening from softening: insights into primary cell wall structure. Plant. J. 100, 1101–1117 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Wei, W. et al. Synergism between cucumber alpha-expansin, fungal endoglucanase and pectin lyase. J. Plant. Physiol. 167, 1204–1210 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, T., Vavylonis, D., Durachko, D. M. & Cosgrove, D. J. Nanoscale movements of cellulose microfibrils in primary cell walls. Nat. Plants 3, 17056 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Burton, R. A., Gidley, M. J. & Fincher, G. B. Heterogeneity in the chemistry, structure and function of plant cell walls. Nat. Chem. Biol. 6, 724–732 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. van de Meene, A. M. L., Doblin, M. S. & Bacic, A. The plant secretory pathway seen through the lens of the cell wall. Protoplasma 254, 75–94 (2017).

    Article  PubMed  Google Scholar 

  55. San Clemente, H., Kolkas, H., Canut, H. & Jamet, E. Plant cell wall proteomes: the core of conserved protein families and the case of non-canonical proteins. Int. J. Mol. Sci. 23, 4273 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

    Article  Google Scholar 

  57. Carpita, N. C. Update on mechanisms of plant cell wall biosynthesis: how plants make cellulose and other (1->4)-beta-d-glycans. Plant. Physiol. 155, 171–184 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Wilson, T. H., Kumar, M. & Turner, S. R. The molecular basis of plant cellulose synthase complex organisation and assembly. Biochem. Soc. Trans. 49, 379–391 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Pedersen, G. B., Blaschek, L., Frandsen, K. E. H., Noack, L. C. & Persson, S. Cellulose synthesis in land plants. Mol. Plant. 16, 206–231 (2023). After a concise summary of cell wall structure, this review dives deep into the machinery of cellulose synthesis, as far as we know it today.

    Article  CAS  PubMed  Google Scholar 

  60. Purushotham, P., Ho, R. & Zimmer, J. Architecture of a catalytically active homotrimeric plant cellulose synthase complex. Science 369, 1089–1094 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Jarvis, M. C. Structure of native cellulose microfibrils, the starting point for nanocellulose manufacture. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 376, 20170045 (2018).

    Google Scholar 

  62. Speicher, T. L., Li, P. Z. & Wallace, I. S. Phosphoregulation of the plant cellulose synthase complex and cellulose synthase-like proteins. Plants 7, 52 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Paredez, A. R., Somerville, C. R. & Ehrhardt, D. W. Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312, 1491–1495 (2006). A classic in the cellulose field, demonstrating tagging of cellulose synthase with fluorescent protein to monitor the movement of CSC along the plasma membrane.

    Article  CAS  PubMed  Google Scholar 

  64. Duncombe, S. G., Chethan, S. G. & Anderson, C. T. Super-resolution imaging illuminates new dynamic behaviors of cellulose synthase. Plant. Cell 34, 273–286 (2022).

    Article  PubMed  Google Scholar 

  65. Gu, Y. & Rasmussen, C. G. Cell biology of primary cell wall synthesis in plants. Plant. Cell 34, 103–128 (2021).

    Article  PubMed Central  Google Scholar 

  66. Li, S., Lei, L., Somerville, C. R. & Gu, Y. Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes. Proc. Natl Acad. Sci. USA 109, 185–190 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Chan, J. & Coen, E. Interaction between autonomous and microtubule guidance systems controls cellulose synthase trajectories. Curr. Biol. 30, 941–947 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Schneider, R. et al. Two complementary mechanisms underpin cell wall patterning during xylem vessel development. Plant. Cell 29, 2433–2449 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vain, T. et al. The cellulase KORRIGAN is part of the cellulose synthase complex. Plant. Physiol. 165, 1521–1532 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Haigler, C. H. & Roberts, A. W. Structure/function relationships in the rosette cellulose synthesis complex illuminated by an evolutionary perspective. Cellulose 26, 227–247 (2019).

    Article  CAS  Google Scholar 

  71. Nixon, B. T. et al. Comparative structural and computational analysis supports eighteen cellulose synthases in the plant cellulose synthesis complex. Sci. Rep. 6, 28696 (2016). This study argues for an 18-chain microfibril based on the structure of the cellulose synthase complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Song, B., Zhao, S., Shen, W., Collings, C. & Ding, S. Y. Direct measurement of plant cellulose microfibril and bundles in native cell walls. Front. Plant. Sci. 11, 479 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Del Mundo, J. T. et al. Grazing-incidence diffraction reveals cellulose and pectin organization in hydrated plant primary cell wall. Sci. Rep. 13, 5421 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Paajanen, A., Zitting, A., Rautkari, L., Ketoja, J. A. & Penttilä, P. A. Nanoscale mechanism of moisture-induced swelling in wood microfibril bundles. Nano Lett. 22, 5143–5150 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, T. & Hong, M. Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. J. Exp. Bot. 67, 503–514 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Tai, H.-C. et al. Wood cellulose microfibrils have a 24-chain core–shell nanostructure in seed plants. Nat. Plants 9, 1154–1168 (2023).

    Article  CAS  PubMed  Google Scholar 

  77. Zhang, T., Zheng, Y. & Cosgrove, D. J. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy. Plant. J. 85, 179–192 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Langan, P. et al. Common processes drive the thermochemical pretreatment of lignocellulosic biomass. Green. Chem. 16, 63–68 (2014).

    Article  CAS  Google Scholar 

  79. Li, T. et al. Developing fibrillated cellulose as a sustainable technological material. Nature 590, 47–56 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Diotallevi, F. & Mulder, B. The cellulose synthase complex: a polymerization driven supramolecular motor. Biophys. J. 92, 2666–2673 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gutierrez, R., Lindeboom, J. J., Paredez, A. R., Emons, A. M. & Ehrhardt, D. W. Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat. Cell Biol. 11, 797–806 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Crowell, E. F. et al. Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. Plant. Cell 21, 1141–1154 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhu, Y. & McFarlane, H. E. Regulation of cellulose synthesis via exocytosis and endocytosis. Curr. Opin. Plant. Biol. 69, 102273 (2022).

    Article  CAS  PubMed  Google Scholar 

  84. Sampathkumar, A. et al. Patterning and lifetime of plasma membrane-localized cellulose synthase is dependent on actin organization in Arabidopsis interphase cells. Plant. Physiol. 162, 675–688 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ghassemi, N. et al. Solid-state NMR investigations of extracellular matrixes and cell walls of algae, bacteria, fungi, and plants. Chem. Rev. 122, 10036–10086 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Yang, J. et al. Biochemical and genetic analysis identify CSLD3 as a beta-1,4-glucan synthase that functions during plant cell wall synthesis. Plant. Cell 32, 1749–1767 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yang, J. et al. Functional relations of CSLD2, CSLD3, and CSLD5 proteins during cell wall synthesis in Arabidopsis. Preprint at bioRxiv https://doi.org/10.1101/2023.04.25.538313 (2023).

  88. Nicolas, W. J. et al. Cryo-electron tomography of the onion cell wall shows bimodally oriented cellulose fibers and reticulated homogalacturonan networks. Curr. Biol. 32, 2375–2389.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chan, J., Calder, G., Fox, S. & Lloyd, C. Cortical microtubule arrays undergo rotary movements in Arabidopsis hypocotyl epidermal cells. Nat. Cell Biol. 9, 171–175 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Jarvis, M. C. Hydrogen bonding and other non-covalent interactions at the surfaces of cellulose microfibrils. Cellulose 30, 667–687 (2023).

    Article  CAS  Google Scholar 

  91. Zhang, Q., Brumer, H., Agren, H. & Tu, Y. The adsorption of xyloglucan on cellulose: effects of explicit water and side chain variation. Carbohydr. Res. 346, 2595–2602 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Zhao, Z., Crespi, V. H., Kubicki, J. D., Cosgrove, D. J. & Zhong, L. H. Molecular dynamics simulation study of xyloglucan adsorption on cellulose surfaces: effects of surface hydrophobicity and side-chain variation. Cellulose 21, 1025–1039 (2014).

    Article  CAS  Google Scholar 

  93. Kishani, S., Benselfelt, T., Wagberg, L. & Wohlert, J. Entropy drives the adsorption of xyloglucan to cellulose surfaces — a molecular dynamics study. J. Colloid Interface Sci. 588, 485–493 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Cosgrove, D. J. Nanoscale structure, mechanics and growth of epidermal cell walls. Curr. Opin. Plant. Biol. 46, 77–86 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Scheller, H. V. & Ulvskov, P. Hemicelluloses. Annu. Rev. Plant. Biol. 61, 263–289 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Hoffmann, N., King, S., Samuels, A. L. & McFarlane, H. E. Subcellular coordination of plant cell wall synthesis. Dev. Cell 56, 933–948 (2021). A detailed overview of the cell biology of cell wall synthesis.

    Article  CAS  PubMed  Google Scholar 

  97. Wang, P., Chen, X., Goldbeck, C., Chung, E. & Kang, B. H. A distinct class of vesicles derived from the trans-Golgi mediates secretion of xylogalacturonan in the root border cell. Plant. J. 92, 596–610 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Yu, L. et al. Eudicot primary cell wall glucomannan is related in synthesis, structure, and function to xyloglucan. Plant. Cell 34, 4600–4622 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Park, Y. B. & Cosgrove, D. J. Xyloglucan and its interactions with other components of the growing cell wall. Plant. Cell Physiol. 56, 180–194 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Schultink, A., Liu, L., Zhu, L. & Pauly, M. Structural diversity and function of xyloglucan sidechain substituents. Plants 3, 526–542 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Pauly, M. & Keegstra, K. Biosynthesis of the plant cell wall matrix polysaccharide xyloglucan. Annu. Rev. Plant. Biol. 67, 235–259 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Chen, M., Cathala, B. & Lahaye, M. Adsorption of apple xyloglucan on cellulose nanofiber depends on molecular weight, concentration and building blocks. Carbohydr. Polym. 296, 119994 (2022).

    Article  CAS  PubMed  Google Scholar 

  103. Velasquez, S. M. et al. Xyloglucan remodeling defines auxin-dependent differential tissue expansion in plants. Int. J. Mol. Sci. 22, 9222 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Schultink, A., Cheng, K., Park, Y. B., Cosgrove, D. J. & Pauly, M. The identification of two arabinosyltransferases from tomato reveals functional equivalency of xyloglucan side chain substituents. Plant. Physiol. 163, 86–94 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jonsson, K., Hamant, O. & Bhalerao, R. P. Plant cell walls as mechanical signaling hubs for morphogenesis. Curr. Biol. 32, R334–R340 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Sowinski, E. E. et al. Lack of xyloglucan in the cell walls of the Arabidopsis xxt1/xxt2 mutant results in specific increases in homogalacturonan and glucomannan. Plant. J. 110, 212–227 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Xiao, C., Zhang, T., Zheng, Y., Cosgrove, D. J. & Anderson, C. T. Xyloglucan deficiency disrupts microtubule stability and cellulose biosynthesis in Arabidopsis, altering cell growth and morphogenesis. Plant. Physiol. 170, 234–249 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Xiang, M. et al. Xyloglucan galactosylation is essential for proper cell wall assembly that facilitates stabilization of the actin cytoskeleton and the endomembrane system. J. Exp. Bot. 74, 5104–5123 (2023).

    Article  CAS  PubMed  Google Scholar 

  109. Kong, Y. et al. Galactose-depleted xyloglucan is dysfunctional and leads to dwarfism in Arabidopsis. Plant. Physiol. 167, 1296–1306 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Pauly, M., Albersheim, P., Darvill, A. & York, W. S. Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant. J. 20, 629–639 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Zheng, Y., Wang, X., Chen, Y., Wagner, E. & Cosgrove, D. J. Xyloglucan in the primary cell wall: assessment by FESEM, selective enzyme digestions and nanogold affinity tags. Plant. J. 93, 211–226 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Tryfona, T. et al. Grass xylan structural variation suggests functional specialization and distinctive interaction with cellulose and lignin. Plant. J. 113, 1004–1020 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang, T., Chen, Y., Tabuchi, A., Cosgrove, D. J. & Hong, M. The target of beta-expansin EXPB1 in maize cell walls from binding and solid-state NMR studies. Plant. Physiol. 172, 2107–2119 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Duan, P. et al. Xylan structure and dynamics in native Brachypodium grass cell walls investigated by solid-state NMR spectroscopy. ACS Omega 6, 15460–15471 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Carpita, N. C. Hemicellulosic polymers of cell walls of zea coleoptiles. Plant. Physiol. 72, 515–521 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ropartz, D. & Ralet, M.-C. in Pectin: Technological and Physiological Properties (ed. Kontogiorgos V.) Ch. 2, 17-36 (Springer Nature, 2020).

  117. Du, J., Anderson, C. T. & Xiao, C. Dynamics of pectic homogalacturonan in cellular morphogenesis and adhesion, wall integrity sensing and plant development. Nat. Plants 8, 332–340 (2022).

    Article  CAS  PubMed  Google Scholar 

  118. Atmodjo, M. A., Hao, Z. & Mohnen, D. Evolving views of pectin biosynthesis. Annu. Rev. Plant. Biol. 64, 747–779 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Caffall, K. H. & Mohnen, D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr. Res. 344, 1879–1900 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Jarvis, M. C. Structure and properties of pectin gels in plant-cell walls. Plant. Cell Environ. 7, 153–164 (1984).

    Article  CAS  Google Scholar 

  121. Jarvis, M. C. Control of thickness of collenchyma cell walls by pectins. Planta 187, 218–220 (1992).

    Article  CAS  PubMed  Google Scholar 

  122. Thimm, J. C., Burritt, D. J., Ducker, W. A. & Melton, L. D. Pectins influence microfibril aggregation in celery cell walls: an atomic force microscopy study. J. Struct. Biol. 168, 337–344 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Radja, A., Horsley, E. M., Lavrentovich, M. O. & Sweeney, A. M. Pollen cell wall patterns form from modulated phases. Cell 176, 856–868.e810 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Radja, A. Pollen wall patterns as a model for biological self-assembly. J. Exp. Zool. B Mol. Dev. Evol. 336, 629–641 (2021).

    Article  PubMed  Google Scholar 

  125. Palacio-Lopez, K. et al. Experimental manipulation of pectin architecture in the cell wall of the unicellular charophyte, Penium margaritaceum. Front. Plant. Sci. 11, 1032 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Temple, H. et al. Golgi-localized putative S-adenosyl methionine transporters required for plant cell wall polysaccharide methylation. Nat. Plants 8, 656–669 (2022).

    Article  CAS  PubMed  Google Scholar 

  127. John, J., Ray, D., Aswal, V. K., Deshpande, A. P. & Varughese, S. Dissipation and strain-stiffening behavior of pectin–Ca gels under LAOS. Soft Matter 15, 6852–6866 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. John, J., Ray, D., Aswal, V. K., Deshpande, A. P. & Varughese, S. Pectin self-assembly and its disruption by water: insights into plant cell wall mechanics. Phys. Chem. Chem. Phys. 24, 22691–22698 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Willats, W. G. et al. Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls. Implications for pectin methyl esterase action, matrix properties, and cell adhesion. J. Biol. Chem. 276, 19404–19413 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Williams, M. A. K. et al. Polysaccharide structures in the outer mucilage of arabidopsis seeds visualized by AFM. Biomacromolecules 21, 1450–1459 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Tan, L. et al. Most of the rhamnogalacturonan-I from cultured Arabidopsis cell walls is covalently linked to arabinogalactan-protein. Carbohydr. Polym. 301, 120340 (2023).

    Article  CAS  PubMed  Google Scholar 

  132. Yang, H. et al. Rhamnogalacturonan-I is a determinant of cell-cell adhesion in poplar wood. Plant. Biotechnol. J. 18, 1027–1040 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Saez-Aguayo, S. & Largo-Gosens, A. Rhamnogalacturonan-I forms mucilage: behind its simplicity, a cutting-edge organization. J. Exp. Bot. 73, 3299–3303 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Saffer, A. M. et al. Cellulose assembles into helical bundles of uniform handedness in cell walls with abnormal pectin composition. Plant. J. 116, 855–870 (2023).

    Article  CAS  PubMed  Google Scholar 

  135. Begum, R. A., Messenger, D. J. & Fry, S. C. Making and breaking of boron bridges in the pectic domain rhamnogalacturonan-II at apoplastic pH in vivo and in vitro. Plant. J. 113, 1310–1329 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lerouge, P., Carlier, M., Mollet, J.-C. & Lehner, A. The cell wall pectic rhamnogalacturonan II, an enigma in plant glycobiology. Carbohydr. Chem. 45, 553–571 (2021).

    Article  Google Scholar 

  137. Fry, S. C. Polysaccharide-modifying enzymes in the plant cell wall. Ann. Rev. Plant Physiol. 46, 497–520 (1995).

    Article  CAS  Google Scholar 

  138. Wolf, S. Cell wall signaling in plant development and defense. Annu. Rev. Plant. Biol. 73, 323–353 (2022). This review details the variety of cell wall sensors and their signalling pathways.

    Article  CAS  PubMed  Google Scholar 

  139. Novakovic, L., Guo, T. T., Bacic, A., Sampathkumar, A. & Johnson, K. L. Hitting the wall sensing and signaling pathways involved in plant cell wall remodeling in response to abiotic stress. Plants-Basel 7, 89 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lin, W. et al. Arabidopsis pavement cell morphogenesis requires FERONIA binding to pectin for activation of ROP GTPase signaling. Curr. Biol. 32, 497–507.e4 (2022).

    Article  CAS  PubMed  Google Scholar 

  141. Tang, W. et al. Mechano-transduction via the pectin-FERONIA complex activates ROP6 GTPase signaling in Arabidopsis pavement cell morphogenesis. Curr. Biol. 32, 508–517.e3 (2022).

    Article  CAS  PubMed  Google Scholar 

  142. Duan, Q. et al. FERONIA controls pectin- and nitric oxide-mediated male-female interaction. Nature 579, 561–566 (2020).

    Article  CAS  PubMed  Google Scholar 

  143. Dunser, K. et al. Extracellular matrix sensing by FERONIA and leucine-rich repeat extensins controls vacuolar expansion during cellular elongation in Arabidopsis thaliana. EMBO J. 38, e100353 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Johnson, K. L. et al. Insights into the evolution of hydroxyproline-rich glycoproteins from 1000 plant transcriptomes. Plant. Physiol. 174, 904–921 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Borassi, C. et al. An update on cell surface proteins containing extensin-motifs. J. Exp. Bot. 67, 477–487 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Moussu, S. & Ingram, G. The EXTENSIN enigma. Cell Surf. 9, 100094 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ma, Y. & Johnson, K. A. Arabinogalactan-proteins. WikiJournal Sci. 4, 1 (2021).

    Article  CAS  Google Scholar 

  148. Shafee, T., Bacic, A. & Johnson, K. Evolution of sequence-diverse disordered regions in a protein family: order within the chaos. Mol. Biol. Evol. 37, 2155–2172 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Cannon, M. C. et al. Self-assembly of the plant cell wall requires an extensin scaffold. Proc. Natl Acad. Sci. USA 105, 2226–2231 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sede, A. R. et al. Arabidopsis pollen extensins LRX are required for cell wall integrity during pollen tube growth. FEBS Lett. 592, 233–243 (2018).

    Article  CAS  PubMed  Google Scholar 

  151. Marzol, E. et al. Filling the gaps to solve the extensin puzzle. Mol. Plant. 11, 645–658 (2018).

    Article  CAS  PubMed  Google Scholar 

  152. Doll, N. M., Berenguer, E., Truskina, J. & Ingram, G. AtEXT3 is not essential for early embryogenesis or plant viability in Arabidopsis. New Phytol. 236, 1629–1633 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hromadova, D., Soukup, A. & Tylova, E. Arabinogalactan proteins in plant roots — an update on possible functions. Front. Plant Sci. 12, 674010 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Lopez-Hernandez, F. et al. Calcium binding by arabinogalactan polysaccharides is important for normal plant development. Plant. Cell 32, 3346–3369 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Silva, J., Ferraz, R., Dupree, P., Showalter, A. M. & Coimbra, S. Three decades of advances in arabinogalactan-protein biosynthesis. Front. Plant Sci. 11, 610377 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Chen, P., Nishiyama, Y. & Wohlert, J. Quantifying the influence of dispersion interactions on the elastic properties of crystalline cellulose. Cellulose 28, 10777–10786 (2021).

    Article  CAS  Google Scholar 

  157. Wohlert, M. et al. Cellulose and the role of hydrogen bonds: not in charge of everything. Cellulose 29, 1–23 (2021).

    Article  Google Scholar 

  158. Glasser, W. G. et al. About the structure of cellulose: debating the Lindman hypothesis. Cellulose 19, 589–598 (2012).

    Article  CAS  Google Scholar 

  159. Williams, M. A. K. in Pectin: Technological and Physiological Properties (ed. Kontogiorgos V.) 125–148 (Springer International Publishing, 2020).

  160. Pieczywek, P. M., Cieśla, J., Płaziński, W. & Zdunek, A. Aggregation and weak gel formation by pectic polysaccharide homogalacturonan. Carbohydr. Polym. 256, 117566 (2021).

    Article  CAS  PubMed  Google Scholar 

  161. Talbott, L. D. & Ray, P. M. Molecular size and separability features of pea cell wall polysaccharides. Implications for models of primary wall structure. Plant. Physiol. 92, 357–368 (1992).

    Article  Google Scholar 

  162. Broxterman, S. E. & Schols, H. A. Characterisation of pectin-xylan complexes in tomato primary plant cell walls. Carbohydr. Polym. 197, 269–276 (2018).

    Article  CAS  PubMed  Google Scholar 

  163. Cornuault, V., Pose, S. & Knox, J. P. Disentangling pectic homogalacturonan and rhamnogalacturonan-I polysaccharides: evidence for sub-populations in fruit parenchyma systems. Food Chem. 246, 275–285 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Moneo-Sánchez, M. et al. β-(1,4)-Galactan remodelling in Arabidopsis cell walls affects the xyloglucan structure during elongation. Planta 249, 351–362 (2019).

    Article  PubMed  Google Scholar 

  165. Herburger, K. et al. Hetero-trans-beta-glucanase produces cellulose-xyloglucan covalent bonds in the cell walls of structural plant tissues and is stimulated by expansin. Mol. Plant. 13, 1047–1062 (2020).

    Article  CAS  PubMed  Google Scholar 

  166. Herburger, K. et al. Defining natural factors that stimulate and inhibit cellulose:xyloglucan hetero-transglucosylation. Plant. J. 105, 1549–1565 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Buanafina, M. M. de O. Feruloylation in grasses: current and future perspectives. Mol. Plant. 2, 861–872 (2009).

    Article  CAS  Google Scholar 

  168. Chateigner-Boutin, A.-L. & Saulnier, L. in Advances in Botanical Research (ed. Sibout R.) 104, 169–213 (Academic, 2022).

  169. Buanafina, M. M. D. & Morris, P. The impact of cell wall feruloylation on plant growth, responses to environmental stress, plant pathogens and cell wall degradability. Agronomy 12, 1847 (2022).

    Article  CAS  Google Scholar 

  170. Guhados, G., Wan, W. K. & Hutter, J. L. Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21, 6642–6646 (2005).

    Article  CAS  PubMed  Google Scholar 

  171. Jacobs, C. R., Huang, H. & Kwon, R. Y. Introduction to Cell Mechanics and Mechanobiology (Garland Science, 2013).

  172. Usov, I. et al. Understanding nanocellulose chirality and structure-properties relationship at the single fibril level. Nat. Commun. 6, 7564 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. McFarlane, H. E. Open questions in plant cell wall synthesis. J. Exp. Bot. 74, 3425–3448 (2023).

    Article  CAS  PubMed  Google Scholar 

  174. Zhu, X., Li, S., Pan, S., Xin, X. & Gu, Y. CSI1, PATROL1, and exocyst complex cooperate in delivery of cellulose synthase complexes to the plasma membrane. Proc. Natl Acad. Sci. 115, E3578 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Schneider, R., Ehrhardt, D. W., Meyerowitz, E. M. & Sampathkumar, A. Tethering of cellulose synthase to microtubules dampens mechano-induced cytoskeletal organization in Arabidopsis pavement cells. Nat. Plants 8, 1064–1073 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Zykwinska, A. W., Ralet, M. C., Garnier, C. D. & Thibault, J. F. Evidence for in vitro binding of pectin side chains to cellulose. Plant. Physiol. 139, 397–407 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Lipowczan, M., Borowska-Wykret, D., Natonik-Bialon, S. & Kwiatkowska, D. Growing cell walls show a gradient of elastic strain across their layers. J. Exp. Bot. 69, 4349–4362 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Crowell, E. F. et al. Differential regulation of cellulose orientation at the inner and outer face of epidermal cells in the Arabidopsis hypocotyl. Plant. Cell 23, 2592–2605 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Chen, D., Melton, L. D., McGillivray, D. J., Ryan, T. M. & Harris, P. J. Changes in the orientations of cellulose microfibrils during the development of collenchyma cell walls of celery (Apium graveolens L.). Planta 250, 1819–1832 (2019).

    Article  CAS  PubMed  Google Scholar 

  180. Kelly-Bellow, R. et al. Brassinosteroid coordinates cell layer interactions in plants via cell wall and tissue mechanics. Science 380, 1275–1281 (2023).

    Article  CAS  PubMed  Google Scholar 

  181. Mollier, C. et al. Spatial consistency of cell growth direction during organ morphogenesis requires CELLULOSE SYNTHASE INTERACTIVE1. Cell Rep. 42, 112689 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. McQueen-Mason, S., Durachko, D. M. & Cosgrove, D. J. Two endogenous proteins that induce cell wall extension in plants. Plant. Cell 4, 1425–1433 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Cosgrove, D. J. Plant expansins: diversity and interactions with plant cell walls. Curr. Opin. Plant. Biol. 25, 162–172 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Sampedro, J. & Cosgrove, D. J. The expansin superfamily. Genome Biol. 6, 242 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Marowa, P., Ding, A. M. & Kong, Y. Z. Expansins: roles in plant growth and potential applications in crop improvement. Plant. Cell Rep. 35, 949–965 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Rayle, D. L. & Cleland, R. E. The acid growth theory of auxin-induced cell elongation is alive and well. Plant. Physiol. 99, 1271–1274 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Hocq, L., Pelloux, J. & Lefebvre, V. Connecting homogalacturonan-type pectin remodeling to acid growth. Trends Plant. Sci. 22, 20–29 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Arsuffi, G. & Braybrook, S. A. Acid growth: an ongoing trip. J. Exp. Bot. 69, 137–146 (2018).

    Article  CAS  PubMed  Google Scholar 

  189. Phyo, P., Gu, Y. & Hong, M. Impact of acidic pH on plant cell wall polysaccharide structure and dynamics: insights into the mechanism of acid growth in plants from solid-state NMR. Cellulose 26, 291–304 (2018).

    Article  Google Scholar 

  190. Cho, H. T. & Kende, H. Expansins in deepwater rice internodes. Plant. Physiol. 113, 1137–1143 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Cleland, R. E., Cosgrove, D. J. & Tepfer, M. Long-term acid-induced wall extension in an in vitro system. Planta 170, 379–385 (1987).

    Article  CAS  PubMed  Google Scholar 

  192. Li, L. et al. Cell surface and intracellular auxin signalling for H+ fluxes in root growth. Nature 599, 273–277 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Fendrych, M. et al. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nat. Plants 4, 453–459 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Li, L., Gallei, M. & Friml, J. Bending to auxin: fast acid growth for tropisms. Trends Plant. Sci. 27, 440–449 (2021).

    Article  PubMed  Google Scholar 

  195. Yuan, S., Wu, Y. & Cosgrove, D. J. A fungal endoglucanase with plant cell wall extension activity. Plant. Physiol. 127, 324–333 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Wang, C. X., Wang, L., McQueen-Mason, S. J., Pritchard, J. & Thomas, C. R. pH and expansin action on single suspension-cultured tomato (Lycopersicon esculentum) cells. J. Plant. Res. 121, 527–534 (2008).

    Article  CAS  PubMed  Google Scholar 

  197. McQueen-Mason, S. J. & Cosgrove, D. J. Expansin mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding. Plant. Physiol. 107, 87–100 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. McQueen-Mason, S. J., Fry, S. C., Durachko, D. M. & Cosgrove, D. J. The relationship between xyloglucan endotransglycosylase and in-vitro cell wall extension in cucumber hypocotyls. Planta 190, 327–331 (1993).

    Article  CAS  PubMed  Google Scholar 

  199. Cosgrove, D. J. Non-enzymatic action of expansins. J. Biol. Chem. 295, 6782 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Fleming, A. J., McQueen-Mason, S., Mandel, T. & Kuhlemeier, C. Induction of leaf primordia by the cell wall protein expansin. Science 276, 1415 (1997).

    Article  CAS  Google Scholar 

  201. Link, B. M. & Cosgrove, D. J. Acid-growth response and alpha-expansins in suspension cultures of bright yellow 2 tobacco. Plant. Physiol. 118, 907–916 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Goh, H. H., Sloan, J., Malinowski, R. & Fleming, A. Variable expansin expression in Arabidopsis leads to different growth responses. J. Plant. Physiol. 171, 329–339 (2014).

    Article  CAS  PubMed  Google Scholar 

  203. Rochange, S. F., Wenzel, C. L. & McQueen-Mason, S. J. Impaired growth in transgenic plants over-expressing an expansin isoform. Plant. Mol. Biol. 46, 581–589 (2001).

    Article  CAS  PubMed  Google Scholar 

  204. Samalova, M. et al. Hormone-regulated expansins: expression, localization, and cell wall biomechanics in Arabidopsis root growth. Plant. Physiol. https://doi.org/10.1093/plphys/kiad228 (2023).

  205. McQueen-Mason, S. & Cosgrove, D. J. Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension. Proc. Natl Acad. Sci. USA 91, 6574–6578 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Whitney, S. E. C., Gidley, M. J. & McQueen-Mason, S. J. Probing expansin action using cellulose/hemicellulose composites. Plant. J. 22, 327–334 (2000).

    Article  CAS  PubMed  Google Scholar 

  207. Georgelis, N., Tabuchi, A., Nikolaidis, N. & Cosgrove, D. J. Structure-function analysis of the bacterial expansin EXLX1. J. Biol. Chem. 286, 16814–16823 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Georgelis, N., Yennawar, N. H. & Cosgrove, D. J. Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin. Proc. Natl Acad. Sci. USA 109, 14830–14835 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Imai, T. et al. Disturbance of the hydrogen bonding in cellulose by bacterial expansin. Cellulose 30, https://doi.org/10.1007/s10570-023-05402-6 (2023).

  210. Yennawar, N. H., Li, L. C., Dudzinski, D. M., Tabuchi, A. & Cosgrove, D. J. Crystal structure and activities of EXPB1 (Zea m 1), a beta-expansin and group-1 pollen allergen from maize. Proc. Natl Acad. Sci. USA 103, 14664–14671 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Silveira, R. L. & Skaf, M. S. Molecular dynamics of the Bacillus subtilis expansin EXLX1: interaction with substrates and structural basis of the lack of activity of mutants. Phys. Chem. Chem. Phys. 18, 3510–3521 (2016).

    Article  CAS  PubMed  Google Scholar 

  212. Hayashi, T. & Kaida, R. Functions of xyloglucan in plant cells. Mol. Plant. 4, 17–24 (2011).

    Article  CAS  PubMed  Google Scholar 

  213. Nishitani, K. & Vissenberg, K. in The Expanding Cell (eds. Verbelen J.-P. & Vissenberg K. eds) 89–116 (Springer Berlin Heidelberg, 2007).

  214. Behar, H., Graham, S. W. & Brumer, H. Comprehensive cross-genome survey and phylogeny of glycoside hydrolase family 16 members reveals the evolutionary origin of EG16 and XTH proteins in plant lineages. Plant. J. 95, 1114–1128 (2018).

    Article  CAS  PubMed  Google Scholar 

  215. Behar, H., Tamura, K., Wagner, E. R., Cosgrove, D. J. & Brumer, H. Conservation of endo-glucanase 16 (EG16) activity across highly divergent plant lineages. Biochem. J. 478, 3063–3078 (2021).

    Article  CAS  PubMed  Google Scholar 

  216. Hrmova, M., Stratilova, B. & Stratilova, E. Broad specific xyloglucan:xyloglucosyl transferases are formidable players in the re-modelling of plant cell wall structures. Int. J. Mol. Sci. 23, 1656 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Saladie, M., Rose, J. K., Cosgrove, D. J. & Catala, C. Characterization of a new xyloglucan endotransglucosylase/hydrolase (XTH) from ripening tomato fruit and implications for the diverse modes of enzymic action. Plant. J. 47, 282–295 (2006).

    Article  CAS  PubMed  Google Scholar 

  218. Maris, A., Suslov, D., Fry, S. C., Verbelen, J. P. & Vissenberg, K. Enzymic characterization of two recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of Arabidopsis and their effect on root growth and cell wall extension. J. Exp. Bot. 60, 3959–3972 (2009).

    Article  CAS  PubMed  Google Scholar 

  219. Van Sandt, V. S. T., Suslov, D., Verbelen, J. P. & Vissenberg, K. Xyloglucan endotransglucosylase activity loosens a plant cell wall. Ann. Bot. 100, 1467–1473 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Kaewthai, N. et al. Group III-A XTH genes of Arabidopsis encode predominant xyloglucan endohydrolases that are dispensable for normal growth. Plant. Physiol. 161, 440–454 (2013).

    Article  CAS  PubMed  Google Scholar 

  221. Hara, Y., Yokoyama, R., Osakabe, K., Toki, S. & Nishitani, K. Function of xyloglucan endotransglucosylase/hydrolases in rice. Ann. Bot. 114, 1309–1318 (2014).

    Article  CAS  PubMed  Google Scholar 

  222. Niraula, P. M., Zhang, X., Jeremic, D., Lawrence, K. S. & Klink, V. P. Xyloglucan endotransglycosylase/hydrolase increases tightly-bound xyloglucan and chain number but decreases chain length contributing to the defense response that Glycine max has to Heterodera glycines. PLoS ONE 16, e0244305 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Osato, Y., Yokoyama, R. & Nishitani, K. A principal role for AtXTH18 in Arabidopsis thaliana root growth: a functional analysis using RNAi plants. J. Plant. Res. 119, 153–162 (2006).

    Article  CAS  PubMed  Google Scholar 

  224. Miedes, E. et al. Xyloglucan endotransglucosylase and cell wall extensibility. J. Plant. Physiol. 168, 196–203 (2011).

    Article  CAS  PubMed  Google Scholar 

  225. Miedes, E. et al. Xyloglucan endotransglucosylase/hydrolase (XTH) overexpression affects growth and cell wall mechanics in etiolated Arabidopsis hypocotyls. J. Exp. Bot. 64, 2481–2497 (2013).

    Article  CAS  PubMed  Google Scholar 

  226. Kushwah, S. et al. Arabidopsis XTH4 and XTH9 contribute to wood cell expansion and secondary wall formation. Plant Physiol. 182, 1946–1965 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Herburger, K., Schoenaers, S., Vissenberg, K. & Mravec, J. Shank-localized cell wall growth contributes to Arabidopsis root hair elongation. Nat. Plants 8, 1222–1232 (2022).

    Article  CAS  PubMed  Google Scholar 

  228. Zabotina, O. A. et al. Mutations in multiple XXT genes of Arabidopsis reveal the complexity of xyloglucan biosynthesis. Plant. Physiol. 159, 1367–1384 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Ohmiya, Y. et al. Evidence that endo-1,4-beta-glucanases act on cellulose in suspension-cultured poplar cells. Plant. J. 24, 147–158 (2000).

    Article  CAS  PubMed  Google Scholar 

  230. Peaucelle, A., Braybrook, S. & Hofte, H. Cell wall mechanics and growth control in plants: the role of pectins revisited. Front. Plant. Sci. 3, 121 (2012). A minireview that attempts to integrate the concepts of growth control by pectins and by expansin-induced loosening of cellulose. The authors speculate that pectin control is an evolutionarily primitive system that emerged in algae and that expansin-mediated control emerged later.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Haas, K. T., Wightman, R., Peaucelle, A. & Hofte, H. The role of pectin phase separation in plant cell wall assembly and growth. Cell Surf. 7, 100054 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Taiz, L. Plant-cell expansion — regulation of cell-wall mechanical-properties. Annu. Rev. Plant. Physiol. 35, 585–657 (1984).

    Article  CAS  Google Scholar 

  233. Levesque-Tremblay, G., Pelloux, J., Braybrook, S. A. & Muller, K. Tuning of pectin methylesterification: consequences for cell wall biomechanics and development. Planta 242, 791–811 (2015).

    Article  CAS  PubMed  Google Scholar 

  234. Peaucelle, A. et al. Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr. Biol. 21, 1720–1726 (2011).

    Article  CAS  PubMed  Google Scholar 

  235. Milani, P., Braybrook, S. A. & Boudaoud, A. Shrinking the hammer: micromechanical approaches to morphogenesis. J. Exp. Bot. 64, 4651–4662 (2013).

    Article  CAS  PubMed  Google Scholar 

  236. Chebli, Y. & Geitmann, A. Cellular growth in plants requires regulation of cell wall biochemistry. Curr. Opin. Cell Biol. 44, 28–35 (2017).

    Article  CAS  PubMed  Google Scholar 

  237. Phyo, P. et al. Gradients in wall mechanics and polysaccharides along growing inflorescence stems. Plant. Physiol. 175, 1593–1607 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Liberman, M. et al. Mung bean hypocotyl homogalacturonan: localization, organization and origin. Ann. Bot. 84, 225–233 (1999).

    Article  CAS  Google Scholar 

  239. Wang, X., Wilson, L. & Cosgrove, D. J. Pectin methylesterase selectively softens the onion epidermal wall yet reduces acid-induced creep. J. Exp. Bot. 71, 2629–2640 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Safran, J. et al. Plant polygalacturonase structures specify enzyme dynamics and processivities to fine-tune cell wall pectins. Plant. Cell 35, 3073–3091 (2023).

    Article  PubMed  Google Scholar 

  241. Palin, R. & Geitmann, A. The role of pectin in plant morphogenesis. Bio Syst. 109, 397–402 (2012).

    CAS  Google Scholar 

  242. Haas, K. T., Wightman, R., Meyerowitz, E. M. & Peaucelle, A. Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells. Science 367, 1003–1007 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Altartouri, B. et al. Pectin chemistry and cellulose crystallinity govern pavement cell morphogenesis in a multi-step mechanism. Plant. Physiol. 181, 127–141 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Belteton, S. A. et al. Real-time conversion of tissue-scale mechanical forces into an interdigitated growth pattern. Nat. Plants 7, 826–841 (2021).

    Article  CAS  PubMed  Google Scholar 

  245. Braybrook, S. A., Hofte, H. & Peaucelle, A. Probing the mechanical contributions of the pectin matrix: insights for cell growth. Plant. Signal. Behav. 7, 1037–1041 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. White, P. B., Wang, T., Park, Y. B., Cosgrove, D. J. & Hong, M. Water-polysaccharide interactions in the primary cell wall of Arabidopsis thaliana from polarization transfer solid-state NMR. J. Am. Chem. Soc. 136, 10399–10409 (2014).

    Article  CAS  PubMed  Google Scholar 

  247. Cho, H.-T. & Cosgrove, D. J. in Plant Hormones: Biosynthesis, Signal Transduction, Action! (ed. Davies P. J.) 262–281 (Springer Netherlands, 2010).

  248. Pacifici, E., Di Mambro, R., Dello Ioio, R., Costantino, P. & Sabatini, S. Acidic cell elongation drives cell differentiation in the Arabidopsis root. EMBO J. 37, e99134 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Ramakrishna, P. et al. EXPANSIN A1-mediated radial swelling of pericycle cells positions anticlinal cell divisions during lateral root initiation. Proc. Natl Acad. Sci. USA 116, 8597–8602 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Vermeer, J. E. et al. A spatial accommodation by neighboring cells is required for organ initiation in Arabidopsis. Science 343, 178–183 (2014).

    Article  CAS  PubMed  Google Scholar 

  251. Keuskamp, D. H. et al. Blue-light-mediated shade avoidance requires combined auxin and brassinosteroid action in Arabidopsis seedlings. Plant. J. 67, 208–217 (2011).

    Article  CAS  PubMed  Google Scholar 

  252. Rauf, M. et al. NAC transcription factor SPEEDY HYPONASTIC GROWTH regulates flooding-induced leaf movement in Arabidopsis. Plant. Cell 25, 4941–4955 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Braybrook, S. A. & Peaucelle, A. Mechano-chemical aspects of organ formation in Arabidopsis thaliana: the relationship between auxin and pectin. PLoS ONE 8, e57813 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Fleming, A. J., Caderas, D., Wehrli, E., McQueen-Mason, S. & Kuhlemeier, C. Analysis of expansin-induced morphogenesis on the apical meristem of tomato. Planta 208, 166–174 (1999).

    Article  CAS  Google Scholar 

  255. Reinhardt, D., Wittwer, F., Mandel, T. & Kuhlemeier, C. Localized upregulation of a new expansin gene predicts the site of leaf formation in the tomato meristem. Plant. Cell 10, 1427–1437 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Nakayama, N. et al. Mechanical regulation of auxin-mediated growth. Curr. Biol. 22, 1468–1476 (2012).

    Article  CAS  PubMed  Google Scholar 

  257. Sampathkumar, A., Yan, A., Krupinski, P. & Meyerowitz, E. M. Physical forces regulate plant development and morphogenesis. Curr. Biol. 24, R475–483 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Bacete, L. et al. THESEUS1 modulates cell wall stiffness and abscisic acid production in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 119, e2119258119 (2022).

    Article  CAS  PubMed  Google Scholar 

  259. Gonneau, M. et al. Receptor kinase THESEUS1 is a rapid alkalinization factor 34 receptor in Arabidopsis. Curr. Biol. 28, 2452–2458.e2454 (2018).

    Article  CAS  PubMed  Google Scholar 

  260. Smokvarska, M. et al. The receptor kinase FERONIA regulates phosphatidylserine localization at the cell surface to modulate ROP signaling. Sci. Adv. 9, eadd4791 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Pacheco, J. M. et al. Cell surface receptor kinase FERONIA linked to nutrient sensor TORC signaling controls root hair growth at low temperature linked to low nitrate in Arabidopsis thaliana. New Phytol. 238, 169–185 (2023).

    Article  CAS  PubMed  Google Scholar 

  262. Mecchia, M. A. et al. The single Marchantia polymorpha FERONIA homolog reveals an ancestral role in regulating cellular expansion and integrity. Development 149, dev200580 (2022).

    Article  CAS  PubMed  Google Scholar 

  263. Shih, H. W., Miller, N. D., Dai, C., Spalding, E. P. & Monshausen, G. B. The receptor-like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings. Curr. Biol. 24, 1887–1892 (2014).

    Article  CAS  PubMed  Google Scholar 

  264. Li, C., Wu, H. M. & Cheung, A. Y. FERONIA and her pals: functions and mechanisms. Plant. Physiol. 171, 2379–2392 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Wang, P. et al. Integrated omics reveal novel functions and underlying mechanisms of the receptor kinase FERONIA in Arabidopsis thaliana. Plant. Cell 34, 2594–2614 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Steinwand, B. J. et al. Alterations in auxin homeostasis suppress defects in cell wall function. PLoS ONE 9, e98193 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Anderson, C. T. & Kieber, J. J. Dynamic construction, perception, and remodeling of plant cell walls. Annu. Rev. Plant. Biol. 71, 39–69 (2020).

    Article  CAS  PubMed  Google Scholar 

  268. Kohorn, B. D. & Kohorn, S. L. The cell wall-associated kinases, WAKs, as pectin receptors. Front. Plant. Sci. 3, 88 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Wagner, T. A. & Kohorn, B. D. Wall-associated kinases are expressed throughout plant development and are required for cell expansion. Plant. Cell 13, 303–318 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Yue, Z. L. et al. The receptor kinase OsWAK11 monitors cell wall pectin changes to fine-tune brassinosteroid signaling and regulate cell elongation in rice. Curr. Biol. 32, 2454–2466.e7 (2022).

    Article  CAS  PubMed  Google Scholar 

  271. Hamant, O., Inoue, D., Bouchez, D., Dumais, J. & Mjolsness, E. Are microtubules tension sensors? Nat. Commun. 10, 2360 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Li, J., Szymanski, D. B. & Kim, T. Probing stress-regulated ordering of the plant cortical microtubule array via a computational approach. BMC Plant Biol. 23, 308 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Fruleux, A., Verger, S. & Boudaoud, A. Feeling stressed or strained? A biophysical model for cell wall mechanosensing in plants. Front. Plant. Sci. 10, 757 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Williamson, R. E. Alignment of cortical microtubules by anisotropic wall stresses. Aust. J. Plant. Physiol. 17, 601–613 (1990).

    Google Scholar 

  275. Decreux, A. & Messiaen, J. Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. Plant Cell Physiol. 46, 268–278 (2005).

    Article  CAS  PubMed  Google Scholar 

  276. Hamilton, E. S. et al. Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination. Science 350, 438–441 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Chebli, Y., Bidhendi, A. J., Kapoor, K. & Geitmann, A. Cytoskeletal regulation of primary plant cell wall assembly. Curr. Biol. 31, R681–R695 (2021).

    Article  CAS  PubMed  Google Scholar 

  278. Leyser, O. Auxin signaling. Plant. Physiol. 176, 465–479 (2018).

    Article  CAS  PubMed  Google Scholar 

  279. Friml, J. et al. ABP1–TMK auxin perception for global phosphorylation and auxin canalization. Nature 609, 575–581 (2022).

    Article  CAS  PubMed  Google Scholar 

  280. Lin, W. et al. TMK-based cell-surface auxin signalling activates cell-wall acidification. Nature 599, 278–282 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Minami, A., Takahashi, K., Inoue, S. I., Tada, Y. & Kinoshita, T. Brassinosteroid induces phosphorylation of the plasma membrane H+-ATPase during hypocotyl elongation in Arabidopsis thaliana. Plant Cell Physiol. 60, 935–944 (2019).

    Article  CAS  PubMed  Google Scholar 

  282. Ajeet, C. et al. Brassinosteroid recruits FERONIA to safeguard cell expansion in Arabidopsis. Preprint at bioRxiv 2023.2010.2001.560400, https://doi.org/10.1101/2023.10.01.560400 (2023).

  283. Haruta, M., Gray, W. M. & Sussman, M. R. Regulation of the plasma membrane proton pump (H+-ATPase) by phosphorylation. Curr. Opin. Plant. Biol. 28, 68–75 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Moussu, S. et al. Structural basis for recognition of RALF peptides by LRX proteins during pollen tube growth. Proc. Natl Acad. Sci. 117, 7494 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Herger, A., Dunser, K., Kleine-Vehn, J. & Ringli, C. Leucine-rich repeat extensin proteins and their role in cell wall sensing. Curr. Biol. 29, R851–R858 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work on wall loosening and expansins was supported by the US Department of Energy (grant no. DE-FG2-84ER13179). Work on wall mechanics was supported by the Human Frontier Science Program for a collaborative research grant RGP0005/2022, and work on wall structure was supported as part of The Center for Lignocellulose Structure and Formation, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under award no. DE-SC0001090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Cosgrove.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Cell plate

The soft wall-like layer initially separating two daughter cells during cell division. With subsequent stabilization by the deposition of additional wall materials, it becomes the pectin-rich adhesive zone, called the middle lamella, between two cell walls.

Elasticity

A measure of the ability of a structure to return to its original shape after being mechanically deformed.

Pericycle

A cylindrical layer of cells located just inside the endodermis. Lateral roots are initiated in the pericycle.

Plasticity

A measure of the extent of irreversible deformation of a material that is stretched or compressed by mechanical force.

Shear stress

The component of stress that is coplanar with a material, resulting in deformation in which parallel surfaces slide past each other.

Supramolecular chemistry

Refers to higher-order molecular assemblies that rely on extensive noncovalent interactions between components to form a coherent structure.

Yield threshold

The minimum force or stress required for a material to begin to deform irreversibly.

Young’s modulus of elasticity

A measure of the stiffness of a material, normalized by cross-sectional area.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cosgrove, D.J. Structure and growth of plant cell walls. Nat Rev Mol Cell Biol 25, 340–358 (2024). https://doi.org/10.1038/s41580-023-00691-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-023-00691-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing