Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

General Research Article

Highly Efficient Bimetallic Catalyst for the Synthesis of N-substituted Decahydroacridine-1,8-diones and Xanthene-1,8-diones: Evaluation of their Biological Activity

Author(s): Sandeep T. Atkore*, Pranita V. Raithak, Kotra Vijay, Siddique A. Ansari, Irfan A. Ansari and Ravi Varala*

Volume 21, Issue 3, 2024

Published on: 14 December, 2023

Page: [345 - 356] Pages: 12

DOI: 10.2174/0115701794265638231114105708

Price: $65

Abstract

Background: Bimetallic catalysis plays a major role in boosting the catalytic performance of monometallic counterparts due to the synergetic effect.

Materials andMethods: In the present study, we have exploited ZrCl4:Mg(ClO4)2 as an efficient bimetallic catalyst for the synthesis of a few biologically relevant N-substituted decahydroacridine- 1,8-diones and xanthene-1,8-diones under solvent-free conditions.

Results: Among the compounds screened for anti-oxidant and anti-microbial activities, the acridine derivatives with chloro and fluoro substitutions (compounds 4b, 4c, 4d, and 4j) have exhibited potent activities when compared to other compounds. Among the xanthene derivatives screened for anti-oxidant activity, compounds 5c, 5i, and 5j with chloro and nitro derivatives exhibited potent antioxidant activity, and the rest all showed moderately potent activity.

Conclusion: Among the compounds screened for antibacterial activity, compound 5j with chloro substitution showed potent activity, followed by compounds 5c, 5d, 5h, and 5i against Gram +ve bacteria, and compounds 5h, 5f, and 5g with N,N-dimethyl, methoxy and hydroxy substitutions have shown potent activity against Gram -ve bacteria.

Keywords: Bimetallic catalysis, ZrCl4: Mg(ClO4)2, catalysis, N-substituted decahydroacridine-1, 8-diones, xanthene-1, 8-diones, antimicrobial, anti-oxidant activity.

« Previous
Graphical Abstract
Animated Abstract
[1]
Horváth, I.T.; Anastas, P.T. Innovations and green chemistry. Chem. Rev., 2007, 107(6), 2169-2173.
[http://dx.doi.org/10.1021/cr078380v] [PMID: 17564478]
[2]
Sharma, A.; Wakode, S.; Sharma, S.; Fayaz, F.; Pottoo, F.H. Methods and strategies used in green chemistry: A review. Curr. Org. Chem., 2020, 24(22), 2555-2565.
[http://dx.doi.org/10.2174/1385272824999200802025233]
[3]
van den Beuken, E.K.; Feringa, B.L. Bimetallic catalysis by late transition metal complexes. Tetrahedron, 1998, 54(43), 12985-13011.
[http://dx.doi.org/10.1016/S0040-4020(98)00319-6]
[4]
Park, Y.J.; Park, J.W.; Jun, C.H. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery. Acc. Chem. Res., 2008, 41(2), 222-234.
[http://dx.doi.org/10.1021/ar700133y] [PMID: 18247521]
[5]
Lee, J.M.; Na, Y.; Han, H.; Chang, S. Cooperative multi-catalyst systems for one-pot organic transformations. Chem. Soc. Rev., 2004, 33(5), 302-312.
[http://dx.doi.org/10.1039/b309033g] [PMID: 15272370]
[6]
Yousuf, S.K.; Mukherjee, D.; Singh, B.; Maity, S.; Taneja, S.C. Cu–Mn bimetallic catalyst for Huisgen [3+2]-cycloaddition. Green Chem., 2010, 12(9), 1568-1572.
[http://dx.doi.org/10.1039/c005088a]
[7]
Arai, S.; Sudo, Y.; Nishida, A. Niobium pentachloride–silver perchlorate as an efficient catalyst in the Friedel–Crafts acylation and Sakurai–Hosomi reaction of acetals. Tetrahedron, 2005, 61(19), 4639-4642.
[http://dx.doi.org/10.1016/j.tet.2005.02.061]
[8]
Löfberg, C.; Grigg, R.; Keep, A.; Derrick, A.; Sridharan, V.; Kilner, C. Sequential one-pot bimetallic Ir(III)/Pd( 0 ) catalysed mono-/bis-alkylation and spirocyclisation processes of 1,3-dimethylbarbituric acid and allenes. Chem. Commun., 2006, 5000-5002(48), 5000-5002.
[http://dx.doi.org/10.1039/B614098J] [PMID: 17146507]
[9]
Reddy, B.M.; Reddy, G.K.; Rao, K.N.; Khan, A.; Ganesh, I. Silica supported transition metal-based bimetallic catalysts for vapour phase selective hydrogenation of furfuraldehyde. J. Mol. Catal. Chem., 2007, 265(1-2), 276-282.
[http://dx.doi.org/10.1016/j.molcata.2006.10.034]
[10]
Kamijo, S.; Yamamoto, Y. A bimetallic catalyst and dual role catalyst: Synthesis of N-(alkoxycarbonyl)indoles from 2-(alkynyl)phenylisocyanates. J. Org. Chem., 2003, 68(12), 4764-4771.
[http://dx.doi.org/10.1021/jo034254p] [PMID: 12790580]
[11]
Especel, C.; Lafaye, G.; Epron, F. Bimetallic catalysts for sustainable chemistry: Surface redox reactions for tuning the catalytic surface composition. ChemCatChem, 2023, 15(3), e202201478.
[http://dx.doi.org/10.1002/cctc.202201478]
[12]
Gholinejad, M.; Khosravi, F.; Afrasi, M.; Sansano, J.M.; Nájera, C. Applications of bimetallic PdCu catalysts. Catal. Sci. Technol., 2021, 11(8), 2652-2702.
[http://dx.doi.org/10.1039/D0CY02339F]
[13]
Xie, Z.; Winter, L.R.; Chen, J.G. Bimetallic-derived catalysts and their application in simultaneous upgrading of CO2 and ethane. Matter, 2021, 4(2), 408-440.
[http://dx.doi.org/10.1016/j.matt.2020.11.013]
[14]
Sharma, A.K.; Mehara, P.; Das, P. Recent advances in supported bimetallic Pd-Au catalysts: Development and applications in organic synthesis with focused catalytic action study. ACS Catal., 2022, 12(11), 6672-6701.
[http://dx.doi.org/10.1021/acscatal.2c00725]
[15]
Loza, K.; Heggen, M.; Epple, M. Synthesis, structure, properties, and applications of bimetallic nanoparticles of Noble metals. Adv. Funct. Mater., 2020, 30(21), 1909260.
[http://dx.doi.org/10.1002/adfm.201909260]
[16]
Alshammari, A.; Kalevaru, V.; Martin, A. Bimetallic catalysts containing Gold and Palladium for environmentally important reactions. Catalysts, 2016, 6(7), 97.
[http://dx.doi.org/10.3390/catal6070097]
[17]
Sinfelt, J.H. Bimetallic catalysts: Discoveries, concepts, and applications; John Wiley & Sons, 1983.
[18]
Van Wyk, S.C.; Onani, M.O.; Nordlander, E. Bimetallic nickel and palladium complexes for catalytic applications. Chem. Pap., 2016, 70(8), 1003-1023.
[http://dx.doi.org/10.1515/chempap-2016-0036]
[19]
Tanaka, K.; Toda, F. Solvent-free organic synthesis. Chem. Rev., 2000, 100(3), 1025-1074.
[http://dx.doi.org/10.1021/cr940089p] [PMID: 11749257]
[20]
Zangade, S.; Patil, P. A review on solvent-free methods in organic synthesis. Curr. Org. Chem., 2020, 23(21), 2295-2318.
[http://dx.doi.org/10.2174/1385272823666191016165532]
[21]
Alam, M.M.; Atkore, S.T.; Kamble, V.T.; Varala, R. ZRCL 4 ‐MG (CLO 4) 2: Highly efficient bimetallic catalyst for acetylation of alcohol with acetic acid. Bull. Korean Chem. Soc., 2022, 43(4), 570-576.
[http://dx.doi.org/10.1002/bkcs.12481]
[22]
Atkore, S.T.; Bondle, G.M.; Kamble, V.T.; Varala, R.; Adil, S.F.; Hatshan, M.R.; Shaik, B. Synthesis, characterization and catalytic evaluation of ZrCl4:Mg(ClO4)2 for the synthesis of 1,3-diaryl-3-(phenylthio)propan-1-one. J. Saudi Chem. Soc., 2021, 25(12), 101359.
[http://dx.doi.org/10.1016/j.jscs.2021.101359]
[23]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A Review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[24]
Sabir, S.; Alhazza, M.I.; Ibrahim, A.A. A review on heterocyclic moieties and their applications. Catal. Sustain. Energy, 2016, 2(1), 99-115.
[http://dx.doi.org/10.1515/cse-2015-0009]
[25]
Bollikolla, H.; Baby, R.M.; Mothilal, M.; Rao, G.M.; Murthy, M.M.; Varala, R. Strategies to synthesis of 1,3,4-oxadiazole derivatives and their biological activities: A mini review. J. Chem. Rev., 2022, 4(3), 255-271.
[http://dx.doi.org/10.22034/jcr.2022.341351.1170]
[26]
Varala, R. Scope of selective heterocycles from organic and pharmaceutical perspective. Pharm. Perspec., 2016.
[http://dx.doi.org/10.5772/60890]
[27]
Qadir, T.; Amin, A.; Sharma, P.K.; Jeelani, I.; Abe, H. A review on medicinally important heterocyclic compounds. Open Med. Chem. J., 2022, 16(1), e187410452202280.
[http://dx.doi.org/10.2174/18741045-v16-e2202280]
[28]
Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blakemore, D.C.; Jones, L.H.; Fadeyi, O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem., 2016, 14(28), 6611-6637.
[http://dx.doi.org/10.1039/C6OB00936K] [PMID: 27282396]
[29]
Neto, B.A.D.; Rocha, R.O.; Rodrigues, M.O. Catalytic approaches to multicomponent reactions: A Critical review and perspectives on the roles of catalysis. Molecules, 2021, 27(1), 132.
[http://dx.doi.org/10.3390/molecules27010132] [PMID: 35011363]
[30]
John, S.E.; Gulati, S.; Shankaraiah, N. Recent advances in multi-component reactions and their mechanistic insights: A triennium review. Org. Chem. Front., 2021, 8(15), 4237-4287.
[http://dx.doi.org/10.1039/D0QO01480J]
[31]
Graebin, C.S.; Ribeiro, F.V.; Rogério, K.R.; Kümmerle, A.E. Multicomponent reactions for the synthesis of bioactive compounds: A review. Curr. Org. Synth., 2019, 16(6), 855-899.
[http://dx.doi.org/10.2174/1570179416666190718153703] [PMID: 31984910]
[32]
Zarganes-Tzitzikas, T.; Chandgude, A.L.; Dömling, A. Multicomponent reactions, union of MCRs and beyond. Chem. Rec., 2015, 15(5), 981-996.
[http://dx.doi.org/10.1002/tcr.201500201] [PMID: 26455350]
[33]
Bosica, G.; Abdilla, R. Recent advances in multicomponent reactions catalysed under operationally heterogeneous conditions. Catalysts, 2022, 12(7), 725.
[http://dx.doi.org/10.3390/catal12070725]
[34]
Kumar, R.; Kaur, M.; Kumari, M. Acridine: A versatile heterocyclic nucleus. Acta Pol. Pharm., 2012, 69(1), 3-9.
[PMID: 22574501]
[35]
Chiron, J.; Galy, J.P. Reactivity of the acridine ring. Synthesis, 2004, 3(3), 313-325.
[http://dx.doi.org/10.1055/s-2003-44379]
[36]
Wainwright, M. Acridine: A neglected antibacterial chromophore. J. Antimicrob. Chemother., 2001, 47(1), 1-13.
[http://dx.doi.org/10.1093/jac/47.1.1] [PMID: 11152426]
[37]
Rajagopal, K.; Baliwada, A.; Varakumar, P.; Raman, K.; Byran, G. A review on acridines as antiproliferative agents. Mini Rev. Med. Chem., 2022, 22(21), 2769-2798.
[http://dx.doi.org/10.2174/1389557522666220511125744] [PMID: 35546777]
[38]
Zhang, B.; Li, X.; Li, B.; Gao, C.; Jiang, Y. Acridine and its derivatives: A patent review (2009 – 2013). Expert Opin. Ther. Pat., 2014, 24(6), 647-664.
[http://dx.doi.org/10.1517/13543776.2014.902052] [PMID: 24848259]
[39]
Rupar, J.; Dobričić, V.; Aleksić, M.; Brborić, J.; Čudina, O. A review of published data on acridine derivatives with different biological activities. Kragujevac J. Sci., 2018, 40(40), 83-101.
[http://dx.doi.org/10.5937/KgJSci1840083R]
[40]
Varakumar, P.; Rajagopal, K.; Aparna, B.; Raman, K.; Byran, G.; Gonçalves Lima, C.M.; Rashid, S.; Nafady, M.H.; Emran, T.B.; Wybraniec, S. Acridine as an anti-tumour agent: A critical review. Molecules, 2022, 28(1), 193.
[http://dx.doi.org/10.3390/molecules28010193] [PMID: 36615391]
[41]
Gensicka-Kowalewska, M.; Cholewiński, G.; Dzierzbicka, K. Recent developments in the synthesis and biological activity of acridine/acridone analogues. RSC Advances, 2017, 7(26), 15776-15804.
[http://dx.doi.org/10.1039/C7RA01026E]
[42]
Kozurkova, M. Acridine derivatives as inhibitors/poisons of topoisomerase II. J. Appl. Toxicol., 2022, 42(4), 544-552.
[http://dx.doi.org/10.1002/jat.4238] [PMID: 34514603]
[43]
Bhosle, M.R.; Nipte, D.; Gaikwad, J.; Shaikh, M.A.; Bondle, G.M.; Sangshetti, J.N. A rapid and green method for expedient multicomponent synthesis of N-substituted decahydroacridine-1,8-diones as potential antimicrobial agents. Res. Chem. Intermed., 2018, 44(11), 7047-7064.
[http://dx.doi.org/10.1007/s11164-018-3541-7]
[44]
Kidwai, M.; Bhatnagar, D. Ceric ammonium nitrate (CAN) catalyzed synthesis of N-substituted decahydroacridine-1,8-diones in PEG. Tetrahedron Lett., 2010, 51(20), 2700-2703.
[http://dx.doi.org/10.1016/j.tetlet.2010.03.033]
[45]
Patil, V.S.; Nandre, K.P.; Kalyankar, M.B.; Nalage, S.N.; Ghule, N.; Bhosale, S.; Bhosale, S. One pot multi-component synthesis of N-substituted decahydroacridine-1,8-diones catalyzed by MoO3/SiO2 as an efficient and reusable heterogeneous catalyst. Curr. Catal., 2012, 1, 73-77.
[http://dx.doi.org/10.2174/2211544711201010073]
[46]
Xiao, L.; Liu, G.; Li, Z.; Ren, P.; Ren, L.; Kong, J. Synthesis of N-Substituted Decahydroacridine-1,8-diones promoted by deep eutectic solvents. Youji Huaxue, 2020, 40(9), 2988-2993.
[http://dx.doi.org/10.6023/cjoc202003043]
[47]
Sudha, S.; Pasha, M.A. A facile synthesis of N-H- and N-substituted acridine-1,8-diones under sonic condition. Scient.World.J., 2013, 2013, 1-6.
[http://dx.doi.org/10.1155/2013/930787] [PMID: 24501587]
[48]
Chate, A.V.; Sukale, S.B.; Ugale, R.S.; Gill, C.H. Baker’s yeast: An efficient, green, and reusable biocatalyst for the one-pot synthesis of biologically important N -substituted decahydroacridine-1,8-dione derivatives. Synth. Commun., 2017, 47(5), 409-420.
[http://dx.doi.org/10.1080/00397911.2016.1266501]
[49]
Xia, J.J.; Zhang, K.H. Synthesis of N-substituted acridinediones and polyhydroquinoline derivatives in refluxing water. Molecules, 2012, 17(5), 5339-5345.
[http://dx.doi.org/10.3390/molecules17055339] [PMID: 22565483]
[50]
Subramanyam, M.; Varala, R.; Sreenivasulu, R.; Rao, M.V.B.; Rao, K.P. A facile, efficient and convenient synthesis of 1,8-dioxodecahydroacridines with PMA-SiO2 resuable catalyst. Lett. Org. Chem., 2018, 15(11), 915-921.
[http://dx.doi.org/10.2174/1570178615666180212153735]
[51]
Chaudhary, A.; Khurana, J.M. Advances in the synthesis of xanthenes: An overview. Curr. Org. Synth., 2018, 15(3), 341-369.
[http://dx.doi.org/10.2174/1570179414666171011162902]
[52]
Seca, A.; Leal, S.; Pinto, D.; Barreto, M.; Silva, A. Xanthenedione derivatives, new promising antioxidant and acetylcholinesterase inhibitor agents. Molecules, 2014, 19(6), 8317-8333.
[http://dx.doi.org/10.3390/molecules19068317] [PMID: 24950437]
[53]
Poursattar Marjani, A.; Abdollahi, S.; Ezzati, M.; Nemati-Kande, E. A facile synthesis of xanthene-1,8(2H)-dione derivatives by using tetrapropylammonium bromide as catalyst. J. Heterocycl. Chem., 2018, 55(6), 1324-1330.
[http://dx.doi.org/10.1002/jhet.3164]
[54]
dos Santos, W.H.; Da Silva-Filho, L.C. Facile and efficient synthesis of xanthenedione derivatives promoted by niobium pentachloride. Chem. Pap., 2016, 70(12), 1658-1664.
[http://dx.doi.org/10.1515/chempap-2016-0098]
[55]
Ilangovan, A.; Malayappasamy, S.; Muralidharan, S.; Maruthamuthu, S. A highly efficient green synthesis of 1, 8-dioxo-octahydroxanthenes. Chem. Cent. J., 2011, 5(1), 81.
[http://dx.doi.org/10.1186/1752-153X-5-81] [PMID: 22152051]
[56]
Venkatesan, K.; Pujari, S.S.; Lahoti, R.J.; Srinivasan, K.V. An efficient synthesis of 1,8-dioxo-octahydro-xanthene derivatives promoted by a room temperature ionic liquid at ambient conditions under ultrasound irradiation. Ultrason. Sonochem., 2008, 15(4), 548-553.
[http://dx.doi.org/10.1016/j.ultsonch.2007.06.001] [PMID: 17658286]
[57]
Rathee, G.; Kohli, S.; Singh, N.; Awasthi, A.; Chandra, R. Calcined layered double hydroxides: Catalysts for xanthene, 1,4-dihydropyridine, and polyhydroquinoline derivative synthesis. ACS Omega, 2020, 5(25), 15673-15680.
[http://dx.doi.org/10.1021/acsomega.0c01901] [PMID: 32637842]
[58]
Bhat, M.A.; Naglah, A.M.; Akber Ansari, S.; Al-Tuwajiria, H.M.; Al-Dhfyan, A. ChCl: Gly (DESs) Promote environmentally benign synthesis of xanthene derivatives and their antitubercular activity. Molecules, 2021, 26(12), 3667.
[http://dx.doi.org/10.3390/molecules26123667] [PMID: 34208536]
[59]
Bosica, G.; De Nittis, R.; Borg, R. Solvent-free, one-pot, multicomponent synthesis of xanthene derivatives. Catalysts, 2023, 13(3), 561.
[http://dx.doi.org/10.3390/catal13030561]
[60]
Atkore, S.T.; Bondle, G.M.; Raithak, P.V.; Kamble, V.T.; Varala, R.; Kuniyil, M.; Hatshan, M.R.; Shaik, B.; Adil, S.F.; Hussain, M.A. Synthesis of 14-substituted-14H-dibenzo[a,j]xanthene derivatives in presence of effective synergetic catalytic system bleaching earth clay and PEG-600. Catalysts, 2021, 11(11), 1294.
[http://dx.doi.org/10.3390/catal11111294]
[61]
Narayana, V.R.; Pudukulathan, Z.; Varala, R. SO42-/SnO2-Catalyzed efficient one-pot synthesis of 7,8-dihydro-2H-chromen-5-ones by formal [3+3] cycloaddition and 1,8-dioxo-octahydroxanthenes via a Knoevenagel condensation. Org. Commun, 2013, 6, 110-119.
[62]
Kusampally, U.; Varala, R.; Kamatala, C.R.; Abbagoni, S. Rate accelerations with zeolite Y in the synthesis of octahydro xanthenes and benzoxanthenes and their simple bio assay data. Chem. Data Collec., 2019, 20, 100201.
[http://dx.doi.org/10.1016/j.cdc.2019.100201]
[63]
Csicsor, A.; Tombácz, E. Screening of humic substances extracted from Leonardite for free radical scavenging activity using DPPH method. Molecules, 2022, 27(19), 6334.
[http://dx.doi.org/10.3390/molecules27196334] [PMID: 36234869]
[64]
Liu, Y.; Wen, F.; Yang, H.; Bao, L.; Zhao, Z.; Zhong, Z. The preparation and antioxidant activities of three phenyl-acyl chito oligosaccharides. Heliyon, 2022, 15(8), e10624.
[http://dx.doi.org/10.1016/j.heliyon.2022.e10624]
[65]
Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal., 2016, 6(2), 71-79.
[http://dx.doi.org/10.1016/j.jpha.2015.11.005] [PMID: 29403965]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy