Skip to main content
Log in

Phenotypic and functional alterations of bone marrow MSCs exposed to multiple myeloma cells

  • Original Article
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Backgrounds

The direct and indirect interactions between multiple myeloma (MM) cells and bone marrow mesenchymal stromal cells (MSCs) play crucial roles in the formation of the bone marrow environment, disease progression, and drug resistance development. However, it remains unclear how MM cells and MSCs individually influence each other to induce these phenomena.

Objective

In this study, we focused on observing changes in MSCs induced by MM cells. Changes in MSCs due to exposure to MM cells were observed by assessing cell proliferation, apoptosis, cell cycle, and morphology. Furthermore, the unique abilities of MSCs were confirmed through differentiation potential and MSC marker expression, along with the demonstration of senescence. Gene profiling was performed to elucidate the mechanisms underlying these changes.

Results

Co-culturing MM cells with MSCs did not alter the morphology or proliferation of MSCs but increased apoptosis. As apoptosis increased, damaged deoxyribonucleic acid (DNA) was repaired, leading to the activation of the cell cycle with an increase in the S phase, resulting in no significant changes in cell proliferation and morphology. Osteogenesis and adipogenesis generally decreased by co-culturing with MM cells, and senescence increased. Significant differences were observed in the expression of MSC marker genes. Gene profiling revealed changes in gene expression following osteogenic differentiation.

Conclusion

Based on these results, MSCs exposed to MM cells exhibited an increase in the S phase of the cell cycle, leading to the recovery of cells undergoing apoptosis. Osteogenesis and adipogenesis decreased, whereas senescence increased, suggesting that these changes were attributed to the overall MSC characteristics and genetic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Agarwal P, Isringhausen S, Li H, Paterson AJ, He J et al (2019) Mesenchymal niche-specific expression of Cxcl12 controls quiescence of treatment-resistant leukemia stem cells. Cell Stem Cell 24(5):769-784.e6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allegra A, Di Gioacchino M, Tonacci A, Petrarca C, Musolino C et al (2021) Multiple myeloma cell-derived exosomes: implications on tumorigenesis, diagnosis. Progn Ther Strat Cells 10(11):2865

    CAS  Google Scholar 

  • Andre T, Meuleman N, Stamatopoulos B, De Bruyn C, Pieters K et al (2013) Evidences of early senescence in multiple myeloma bone marrow mesenchymal stromal cells. PLoS ONE 8(3):e59756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arnulf B, Lecourt S, Soulier J, Ternaux B, Lacassagne MN et al (2007) Phenotypic and functional characterization of bone marrow mesenchymal stem cells derived from patients with multiple myeloma. Leukemia 21(1):158–163

    Article  PubMed  CAS  Google Scholar 

  • Attal M, Lauwers-Cances V, Hulin C, Leleu X, Caillot D et al (2017) Lenalidomide, bortezomib, and dexamethasone with transplantation for myeloma. N Engl J Med 376(14):1311–1320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berenstein R, Blau O, Nogai A, Waechter M, Slonova E et al (2015) Multiple myeloma cells alter the senescence phenotype of bone marrow mesenchymal stromal cells under participation of the DLK1-DIO3 genomic region. BMC Cancer 15:68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao YJ, Zheng YH, Li Q, Zheng J, Ma LT et al (2022) MSC senescence-related genes are associated with myeloma prognosis and lipid metabolism-mediated resistance to proteasome inhibitors. J Oncol 2022:4705654

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi H, Kim Y, Kang D, Kwon A, Kim J et al (2020) Common and different alterations of bone marrow mesenchymal stromal cells in myelodysplastic syndrome and multiple myeloma. Cell Prolif 53(5):e12819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corradi G, Baldazzi C, Očadlíková D, Marconi G, Parisi S et al (2018) Mesenchymal stromal cells from myelodysplastic and acute myeloid leukemia patients display in vitro reduced proliferative potential and similar capacity to support leukemia cell survival. Stem Cell Res Ther 9(1):271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corre J, Mahtouk K, Attal M, Gadelorge M, Huynh A et al (2007) Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia 21(5):1079–1088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Desantis V, Savino FD, Scaringella A, Potenza MA, Nacci C et al (2022) The leading role of the immune microenvironment in multiple myeloma: a new target with a great prognostic and clinical value. J Clin Med 11(9):2513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diaz-Tejedor A, Lorenzo-Mohamed M, Puig N, Garcia-Sanz R, Mateos MV et al (2021) Immune system alterations in multiple myeloma: molecular mechanisms and therapeutic strategies to reverse immunosuppression. Cancers (basel) 13(6):1353

    Article  PubMed  CAS  Google Scholar 

  • Fernando RC, Mazzotti DR, Azevedo H, Sandes AF, Rizzatti EG et al (2019) Transcriptome analysis of mesenchymal stem cells from multiple myeloma patients reveals downregulation of genes involved in cell cycle progression, immune response, and bone metabolism. Sci Rep 9(1):1056

    Article  PubMed  PubMed Central  Google Scholar 

  • Flores-Figueroa E, Arana-Trejo RM, Gutiérrez-Espíndola G, Pérez-Cabrera A, Mayani H (2005) Mesenchymal stem cells in myelodysplastic syndromes: phenotypic and cytogenetic characterization. Leuk Res 29(2):215–224

    Article  PubMed  CAS  Google Scholar 

  • Forster S, Radpour R, Ochsenbein AF (2023) Molecular and immunological mechanisms of clonal evolution in multiple myeloma. Front Immunol 14:1243997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garayoa M, Garcia JL, Santamaria C, Garcia-Gomez A, Blanco JF et al (2009) Mesenchymal stem cells from multiple myeloma patients display distinct genomic profile as compared with those from normal donors. Leukemia 23(8):1515–1527

    Article  PubMed  CAS  Google Scholar 

  • García-Sánchez D, González-González A, Alfonso-Fernández A, Del Dujo-Gutiérrez M, Pérez-Campo FM (2023) Communication between bone marrow mesenchymal stem cells and multiple myeloma cells: Impact on disease progression. World J Stem Cells 15(5):421–437

    Article  PubMed  PubMed Central  Google Scholar 

  • Garderet L, Mazurier C, Chapel A, Ernou I, Boutin L et al (2007) Mesenchymal stem cell abnormalities in patients with multiple myeloma. Leuk Lymphoma 48(10):2032–2041

    Article  PubMed  CAS  Google Scholar 

  • Guo J, Zhao Y, Fei C, Zhao S, Zheng Q et al (2018) Dicer1 downregulation by multiple myeloma cells promotes the senescence and tumor-supporting capacity and decreases the differentiation potential of mesenchymal stem cells. Cell Death Dis 9(5):512

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta D, Treon SP, Shima Y, Hideshima T, Podar K et al (2001) Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia 15(12):1950–1961

    Article  PubMed  CAS  Google Scholar 

  • Kawano Y, Kawano H, Ghoneim D, Fountaine TJ, Byun DK et al (2023) Myelodysplastic syndromes disable human CD271+VCAM1+CD146+ niches supporting normal hematopoietic stem/progenitor cells. bioRxiv 2023.04.09.536176 (2023).

  • Kumar SK, Rajkumar V, Kyle RA, van Duin M, Sonneveld P et al (2017) Multiple myeloma. Nat Rev Dis Primers 3:17046

    Article  PubMed  Google Scholar 

  • Landgren O, Kyle RA, Pfeiffer RM, Katzmann JA, Caporaso NE et al (2009) Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood 113(22):5412–5417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lovell-Badge R, Anthony E, Barker RA, Bubela T, Brivanlou AH et al (2021) ISSCR guidelines for stem cell research and clinical translation: the 2021 update. Stem Cell Rep 16(6):1398–1408

    Article  Google Scholar 

  • McCarthy PL, Holstein SA, Petrucci MT, Richardson PG, Hulin C et al (2017) Lenalidomide maintenance after autologous stem-cell transplantation in newly diagnosed multiple myeloma: a meta-analysis. J Clin Oncol 35(29):3279–3289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mehdi SJ, Johnson SK, Epstein J, Zangari M, Qu P et al (2019) Mesenchymal stem cells gene signature in high-risk myeloma bone marrow linked to suppression of distinct IGFBP2-expressing small adipocytes. Br J Haematol 184(4):578–593

    Article  PubMed  CAS  Google Scholar 

  • Moreau P, Attal M, Hulin C, Arnulf B, Belhadj K et al (2019) Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): a randomised, open-label, phase 3 study. Lancet 394(10192):29–38

    Article  PubMed  CAS  Google Scholar 

  • Moreau P, Kumar SK, San Miguel J, Davies F, Zamagni E et al (2021) Treatment of relapsed and refractory multiple myeloma: recommendations from the International Myeloma Working Group. Lancet Oncol 22(3):e105–e118

    Article  PubMed  Google Scholar 

  • Pan C, Hu T, Liu P, Ma D, Cao S et al (2023) BM-MSCs display altered gene expression profiles in B-cell acute lymphoblastic leukemia niches and exert pro-proliferative effects via overexpression of IFI6. J Transl Med 21(1):593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Plakhova N, Panagopoulos V, Vandyke K, Zannettino ACW, Mrozik KM (2023) Mesenchymal stromal cell senescence in haematological malignancies. Cancer Metastasis Rev 42(1):277–296

    Article  PubMed  Google Scholar 

  • Rathnayake AJ, Goonasekera HW, Dissanayake VH (2016) Phenotypic and cytogenetic characterization of mesenchymal stromal cells in de novo myelodysplastic syndromes. Anal Cell Pathol (Amst) 2016:8012716.

  • Vanegas NP, Ruiz-Aparicio PF, Uribe GI, Linares-Ballesteros A, Vernot JP (2021) Leukemia-induced cellular senescence and stemness alterations in mesenchymal stem cells are reversible upon withdrawal of B-cell acute lymphoblastic leukemia cells. Int J Mol Sci 22(15):8166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wallace SR, Oken MM, Lunetta KL, Panoskaltsis-Mortari A, Masellis AM (2001) Abnormalities of bone marrow mesenchymal cells in multiple myeloma patients. Cancer 91(7):1219–1230

    Article  PubMed  CAS  Google Scholar 

  • Xu S, Evans H, Buckle C, De Veirman K, Hu J et al (2012) Impaired osteogenic differentiation of mesenchymal stem cells derived from multiple myeloma patients is associated with a blockade in the deactivation of the Notch signaling pathway. Leukemia 26(12):2546–2549

    Article  PubMed  CAS  Google Scholar 

  • Xu S, De Veirman K, De Becker A, Vanderkerken K, Van Riet I (2018) Mesenchymal stem cells in multiple myeloma: a therapeutical tool or target? Leukemia 32(7):1500–1514

    Article  PubMed  PubMed Central  Google Scholar 

  • Yaccoby S, Pearse RN, Johnson CL, Barlogie B, Choi Y et al (2002) Myeloma interacts with the bone marrow microenvironment to induce osteoclastogenesis and is dependent on osteoclast activity. Br J Haematol 116(2):278–290

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author(s) wish(es) to acknowledge the financial support of the Catholic Medical Center Research Foundation made in the program year of 2015. Also, this work was supported by the National Research Foundation (NRF) grant (No. 2022R1F1A1075163) funded by the MSIT of Korea (2022M3A9B6018217); and the Technology Innovation Program (No.20012378) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Contributions

HJK and S-AY designed the research study. SYE and SH performed the experiments. SYE and SH and HK analyzed the experiment data. HJK and S-AY and SYE interpreted data and wrote manuscript. According to the experimental contribution, HJK stated as the first co-first author.

Corresponding author

Correspondence to Seung-Ah Yahng.

Ethics declarations

Conflict of interest

Hye Joung Kim declares that she has no conflict of interest. So Young Eom declares that she has no conflict of interest. Saeyeon Hwang declares that he has no conflict of interest. Hyunsoo Kim declares that he has no conflict of interest. Seok Chung declares that he has no conflict of interest. Seung-Ah Yahng declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.J., Eom, S.Y., Hwang, S. et al. Phenotypic and functional alterations of bone marrow MSCs exposed to multiple myeloma cells. Mol. Cell. Toxicol. (2023). https://doi.org/10.1007/s13273-023-00415-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13273-023-00415-5

Keywords

Navigation