Skip to main content

Advertisement

Log in

Gut-Brain Axis Deregulation and Its Possible Contribution to Neurodegenerative Disorders

  • Review
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

The gut-brain axis is an essential communication pathway between the central nervous system (CNS) and the gastrointestinal tract. The human microbiota is composed of a diverse and abundant microbial community that compasses more than 100 trillion microorganisms that participate in relevant physiological functions such as host nutrient metabolism, structural integrity, maintenance of the gut mucosal barrier, and immunomodulation. Recent evidence in animal models has been instrumental in demonstrating the possible role of the microbiota in neurodevelopment, neuroinflammation, and behavior. Furthermore, clinical studies suggested that adverse changes in the microbiota can be considered a susceptibility factor for neurological disorders (NDs), such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS). In this review, we will discuss evidence describing the role of gut microbes in health and disease as a relevant risk factor in the pathogenesis of neurodegenerative disorders, including AD, PD, HD, and ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Materials

N/A.

Abbreviations

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

BBB:

Brain-blood barrier

BDNF:

Brain-derived neurotrophic factor

CNS:

Central nervous system CNS

ENS:

Enteric nervous system

GABA:

γ-Aminobutyric acid

GI:

Gastrointestinal

GDNF:

Glial cell line-derived neurotrophic factor

GDNF:

Glial-derived neurotrophic factor

GPR41:

G-protein-coupled receptor 41

GPR43:

G-protein-coupled receptor 43

HD:

Huntington’s disease

HTT:

Huntingtin

LPS:

Lipopolysaccharides

MCP-1:

Monocyte chemoattractant protein-1

mHTT:

Mutant huntingtin

NDs::

Neurodegenerative diseases

NGF:

Nerve growth factor

PAMPs:

Pathogen-associated molecular pattern

PD:

Parkinson’s disease

SCFAs:

Short-chain fatty acids

SOD1:

Superoxide dismutase

SPF:

Specific pathogen-free

References

  • Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721–5732

    Article  PubMed  PubMed Central  Google Scholar 

  • Aggarwal N, Kitano S, Puah GRY, Kittelmann S, Hwang IY, Chang MW (2023) Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. Chem Rev 123:31–72

    Article  CAS  PubMed  Google Scholar 

  • Agnello L, Ciaccio M (2022) Neurodegenerative diseases: from molecular basis to therapy. Int J Mol Sci 23:12854

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahn EH, Kang SS, Liu X, Chen G, Zhang Z, Chandrasekharan B et al (2020) Initiation of Parkinson’s disease from gut to brain by δ-secretase. Cell Res 30:70–87

    Article  PubMed  Google Scholar 

  • Aizawa E, Tsuji H, Asahara T, Takahashi T, Teraishi T, Yoshida S et al (2016) Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. J Affect Disord 202:254–257

    Article  PubMed  Google Scholar 

  • Akbari E, Asemi Z, Daneshvar Kakhaki R, Bahmani F, Kouchaki E, Tamtaji OR et al (2016) Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: a randomized, double-blind and controlled trial. Front Aging Neurosci  8

  • Alexander GE (2004) Biology of Parkinson’s disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin Neurosci 6:259–280

    Article  PubMed  PubMed Central  Google Scholar 

  • Alonso R, Pisa D, Carrasco L (2019) Brain microbiota in Huntington’s disease patients. Front Microbiol 10:2622

    Article  PubMed  PubMed Central  Google Scholar 

  • Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T et al (2011) MetaHIT Consortium (additional members),  Enterotypes of the human gut microbiome. Nature 473:174–180

  • Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci 101:15718–15723

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P et al (2015) Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe 17:852

    Article  PubMed  Google Scholar 

  • Benros ME, Eaton WW, Mortensen PB (2014) The epidemiologic evidence linking autoimmune diseases and psychosis. Biol Psychiatry 75:300–306

    Article  PubMed  Google Scholar 

  • Beqollari D, Romberg CF, Dobrowolny G, Martini M, Voss AA, Musarò A et al (2016) Progressive impairment of CaV1.1 function in the skeletal muscle of mice expressing a mutant type 1 Cu/Zn superoxide dismutase (G93A) linked to amyotrophic lateral sclerosis. Skelet Muscle 6:24

  • Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J et al (2011) The Intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141:599-609.e3

    Article  CAS  PubMed  Google Scholar 

  • Berk M, Kapczinski F, Andreazza AC, Dean OM, Giorlando F, Maes M et al (2011) Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev 35:804–817

    Article  CAS  PubMed  Google Scholar 

  • Bik EM, Eckburg PB, Gill SR, Nelson KE, Purdom EA, Francois F et al (2006) Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci 103:732–737

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Bioque M, González-Rodríguez A, Garcia-Rizo C, Cobo J, Monreal JA, Usall J et al (2021) Targeting the microbiome-gut-brain axis for improving cognition in schizophrenia and major mood disorders: A narrative review. Prog Neuropsychopharmacol Biol Psychiatry 105:110130

    Article  CAS  PubMed  Google Scholar 

  • Blacher E, Bashiardes S, Shapiro H, Rothschild D, Mor U, Dori-Bachash M et al (2019) Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature 572:474–480

    Article  ADS  CAS  PubMed  Google Scholar 

  • Blumenstock S, Rodrigues EF, Peters F, Blazquez-Llorca L, Schmidt F, Giese A et al (2017) Seeding and transgenic overexpression of alpha-synuclein triggers dendritic spine pathology in the neocortex. EMBO Mol Med 9:716–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boddy SL, Giovannelli I, Sassani M, Cooper-Knock J, Snyder MP, Segal E et al (2021) The gut microbiome: a key player in the complexity of amyotrophic lateral sclerosis (ALS). BMC Med 19:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolognini D, Tobin AB, Milligan G, Moss CE (2016) The pharmacology and function of receptors for short-chain fatty acids. Mol Pharmacol 89:388–398

    Article  CAS  PubMed  Google Scholar 

  • Bonfili L, Cecarini V, Gogoi O, Gong C, Cuccioloni M, Angeletti M et al (2021) Microbiota modulation as preventative and therapeutic approach in Alzheimer’s disease. FEBS J 288:2836–2855

    Article  CAS  PubMed  Google Scholar 

  • Boullier S, Nougayrède JP, Marchès O, Tasca C, Boury M, Oswald E et al (2003) Genetically engineered enteropathogenic Escherichia coli strain elicits a specific immune response and protects against a virulent challenge. Microbes Infect 5:857–867

    Article  CAS  PubMed  Google Scholar 

  • Bourassa MW, Alim I, Bultman SJ, Ratan RR (2016) Butyrate, neuroepigenetics and the gut microbiome: can a high fiber diet improve brain health? Neurosci Lett 625:56–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braak H, Rüb U, Gai WP, Del Tredici K (2003) Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm 110:517–536

    Article  CAS  PubMed  Google Scholar 

  • Braak H, de Vos RAI, Bohl J, Del Tredici K (2006) Gastric α-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 396:67–72

    Article  CAS  PubMed  Google Scholar 

  • Brandscheid C, Schuck F, Reinhardt S, Schäfer KH, Pietrzik CU, Grimm M et al (2017) Altered gut microbiome composition and tryptic activity of the 5xFAD Alzheimer’s mouse model. J Alzheimers Dis 56:775–788

    Article  CAS  PubMed  Google Scholar 

  • Brüggemann N, Hagenah J, Stanley K, Klein C, Wang C, Raymond D et al (2011) Substantia nigra hyperechogenicity with LRRK2 G2019S mutations. Mov Disord 26:885–888

    Article  PubMed  PubMed Central  Google Scholar 

  • Bunton-Stasyshyn RKA, Saccon RA, Fratta P, Fisher EMC (2015) SOD1 Function and its implications for amyotrophic lateral sclerosis pathology: new and renascent themes. Neuroscientist 21:519–529

    Article  CAS  PubMed  Google Scholar 

  • Burberry A, Wells MF, Limone F, Couto A, Smith KS, Keaney J et al (2020) C9orf72 suppresses systemic and neural inflammation induced by gut bacteria. Nature 582:89–94

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabanas M, Piquemal M, Pistono C, Arnaud S, Rakesh D, Poinama E et al (2020) Correlations between mutant huntingtin aggregates and behavioral changes in R6/1 mice. J Huntingt Dis 9:33–45

    Article  CAS  Google Scholar 

  • Calvani R, Picca A, Lo Monaco MR, Landi F, Bernabei R, Marzetti E (2018) Of microbes and minds: a narrative review on the second brain aging. Front Med 5:53

    Article  Google Scholar 

  • Caminiti SP, Presotto L, Baroncini D, Garibotto V, Moresco RM, Gianolli L et al (2017) Axonal damage and loss of connectivity in nigrostriatal and mesolimbic dopamine pathways in early Parkinson’s disease. NeuroImage Clin 14:734–740

    Article  PubMed  PubMed Central  Google Scholar 

  • Cani PD (2018) Human gut microbiome: hopes, threats and promises. Gut 67:1716–1725

    Article  CAS  PubMed  Google Scholar 

  • Casoli T, Di Stefano G, Fattoretti P, Giorgetti B, Balietti M, Lattanzio F et al (2012) Dynamin binding protein gene expression and memory performance in aged rats. Neurobiol Aging 33:618.e15-618.e19

    Article  CAS  PubMed  Google Scholar 

  • Cattaneo A, Cattane N, Galluzzi S, Provasi S, Lopizzo N, Festari C et al (2017) Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging 49:60–68

    Article  CAS  PubMed  Google Scholar 

  • Ceppa FA, Izzo L, Sardelli L, Raimondi I, Tunesi M, Albani D et al (2020) Human gut-microbiota interaction in neurodegenerative disorders and current engineered tools for its modeling. Front Cell Infect Microbiol 10:297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chand KK, Lee KM, Lee JD, Qiu H, Willis EF, Lavidis NA et al (2018) Defects in synaptic transmission at the neuromuscular junction precede motor deficits in a TDP-43 Q331K transgenic mouse model of amyotrophic lateral sclerosis. FASEB J 32:2676–2689

    Article  PubMed  Google Scholar 

  • Chang CH, Lin CH, Lane HY (2020) d-glutamate and gut microbiota in Alzheimer’s disease. Int J Mol Sci 21:2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen QQ, Haikal C, Li W, Li MT, Wang ZY, Li JY (2018) Age-dependent alpha-synuclein accumulation and aggregation in the colon of a transgenic mouse model of Parkinson’s disease. Transl Neurodegener 7:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Coello K, Hansen TH, Sørensen N, Munkholm K, Kessing LV, Pedersen O et al (2019) Gut microbiota composition in patients with newly diagnosed bipolar disorder and their unaffected first-degree relatives. Brain Behav Immun 75:112–118

    Article  PubMed  Google Scholar 

  • Collier TJ, Kanaan NM, Kordower JH (2011) Ageing as a primary risk factor for Parkinson’s disease: evidence from studies of non-human primates. Nat Rev Neurosci 12:359–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10:735–742

    Article  CAS  PubMed  Google Scholar 

  • Conley MN, Wong CP, Duyck KM, Hord N, Ho E, Sharpton TJ (2016) Aging and serum MCP-1 are associated with gut microbiome composition in a murine model. PeerJ 4:e1854

    Article  PubMed  PubMed Central  Google Scholar 

  • Cryan JF, O’Riordan KJ, Sandhu K, Peterson V, Dinan TG (2020) The gut microbiome in neurological disorders. Lancet Neurol 19:179–194

    Article  CAS  PubMed  Google Scholar 

  • Cussotto S, Sandhu KV, Dinan TG, Cryan JF (2018) The Neuroendocrinology of the microbiota-gut-brain axis: a behavioural perspective. Front Neuroendocrinol 51:80–101

    Article  CAS  PubMed  Google Scholar 

  • Das B, Nair GB (2019) Homeostasis and dysbiosis of the gut microbiome in health and disease. J Biosci 44:117

    Article  PubMed  Google Scholar 

  • Dash S, Syed YA, Khan MR (2022) Understanding the role of the gut microbiome in brain development and its association with neurodevelopmental psychiatric disorders. Front Cell Dev Biol 10:880544

    Article  PubMed  PubMed Central  Google Scholar 

  • David LA, Materna AC, Friedman J, Campos-Baptista MI, Blackburn MC, Perrotta A et al (2014) Host lifestyle affects human microbiota on daily timescales. Genome Biol 15:R89

    Article  PubMed  PubMed Central  Google Scholar 

  • Desbonnet L, Clarke G, Traplin A, O’Sullivan O, Crispie F, Moloney RD et al (2015) Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav Immun 48:165–173

    Article  CAS  PubMed  Google Scholar 

  • DeTure MA, Dickson DW (2019) The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 14:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Gioia D, Bozzi Cionci N, Baffoni L, Amoruso A, Pane M, Mogna L et al (2020) A prospective longitudinal study on themicrobiota composition in amyotrophic lateral sclerosis. BMC Med 18:153

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Pardo A, Amico E, Scalabrì F, Pepe G, Castaldo S, Elifani F et al (2017) Impairment of blood-brain barrier is an early event in R6/2 mouse model of Huntington Disease. Sci Rep 7:41316

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Dinan TG, Cryan JF (2017) The microbiome-gut-brain axis in health and disease. Gastroenterol Clin North Am 46:77–89

    Article  PubMed  Google Scholar 

  • Djousse L, Knowlton B, Cupples LA, Marder K, Shoulson I, Myers RH (2002) Weight loss in early stage of Huntington’s disease. Neurology 59:1325–1330

    Article  CAS  PubMed  Google Scholar 

  • Dorsey ER, Bloem BR (2018) The Parkinson pandemic—a call to action. JAMA Neurol 75:9–10

    Article  PubMed  Google Scholar 

  • Du G, Dong W, Yang Q, Yu X, Ma J, Gu W et al (2021) Altered gut microbiota related to inflammatory responses in patients with Huntington’s disease. Front Immunol 11:603594

    Article  PubMed  PubMed Central  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Endres K, Schäfer KH (2018) Influence of commensal microbiota on the enteric nervous system and its role in neurodegenerative diseases. J Innate Immun 10:172–180

    Article  PubMed  PubMed Central  Google Scholar 

  • Erkkinen MG, Kim MO, Geschwind MD (2018) Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol 10:a033118

    Article  PubMed  PubMed Central  Google Scholar 

  • Esposito E, Di Matteo V, Di Giovanni G (2007) Death in the substantia nigra: a motor tragedy. Expert Rev Neurother 7:677–697

    Article  CAS  PubMed  Google Scholar 

  • Fan Y, Pedersen O (2021) Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 19:55–71

    Article  CAS  PubMed  Google Scholar 

  • Fang P, Kazmi SA, Jameson KG, Hsiao EY (2020) The microbiome as a modifier of neurodegenerative disease risk. Cell Host Microbe 28:201–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fasano A, Bove F, Gabrielli M, Petracca M, Zocco MA, Ragazzoni E et al (2013) The role of small intestinal bacterial overgrowth in Parkinson’s disease. Mov Disord 28:1241–1249

    Article  CAS  PubMed  Google Scholar 

  • Feeney SJ, McKelvie PA, Austin L, Jean-Francois MJB, Kapsa R, Tombs SM et al (2001) Presymptomatic motor neuron loss and reactive astrocytosis in the SOD1 mouse model of amyotrophic lateral sclerosis. Muscle Nerve 24:1510–1519

    Article  CAS  PubMed  Google Scholar 

  • Feigin VL, Nichols E, Alam T, Bannick MS, Beghi E, Blake N et al (2019) Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18:459–480

    Article  Google Scholar 

  • Fernandez-Real JM, Serino M, Blasco G, Puig J, Daunis-i-Estadella J, Ricart W et al (2015) Gut microbiota interacts with brain microstructure and function. J Clin Endocrinol Metab 100:4505–4513

    Article  CAS  PubMed  Google Scholar 

  • Figueroa-Romero C, Guo K, Murdock BJ, Paez-Colasante X, Bassis CM, Mikhail KA et al (2019) Temporal evolution of the microbiome, immune system, and epigenome with disease progression in ALS mice. Dis Model Mech dmm.041947

  • Fischer M, Sipe B, Cheng YW, Phelps E, Rogers N, Sagi S et al (2017) Fecal microbiota transplant in severe and severe-complicated Clostridium difficile : a promising treatment approach. Gut Microbes 8:289–302

  • Fitzgerald E, Murphy S, Martinson HA (2019) Alpha-Synuclein Pathology and the role of the microbiota in Parkinson’s disease. Front Neurosci 13:369

    Article  PubMed  PubMed Central  Google Scholar 

  • Forsyth CB, Shannon KM, Kordower JH, Voigt RM, Shaikh M, Jaglin JA et al (2011) Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS ONE 6:e28032

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster JA, McVey Neufeld KA (2013) Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36:305–312

    Article  CAS  PubMed  Google Scholar 

  • Fröhlich EE, Farzi A, Mayerhofer R, Reichmann F, Jačan A, Wagner B et al (2016) Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication. Brain Behav Immun 56:140–155

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS et al (2002) α-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4:160–164

    Article  CAS  PubMed  Google Scholar 

  • Fülling C, Dinan TG, Cryan JF (2019) Gut microbe to brain signaling: what happens in vagus…. Neuron 101:998–1002

    Article  PubMed  Google Scholar 

  • Gammon K (2014) Neurodegenerative disease: brain windfall. Nature 515:299–300

    Article  PubMed  Google Scholar 

  • García-Redondo A, Dols-Icardo O, Rojas-García R, Esteban-Pérez J, Cordero-Vázquez P, Muñoz-Blanco JL et al (2013) Analysis of the C9orf72 gene in patients with amyotrophic lateral sclerosis in Spain and different populations worldwide. Hum Mutat 34:79–82

    Article  PubMed  Google Scholar 

  • Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT, Philpott DJ et al (2011) Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60:307–317

    Article  PubMed  Google Scholar 

  • Ghezzi L, Cantoni C, Rotondo E, Galimberti D (2022) The gut microbiome–brain crosstalk in neurodegenerative diseases. Biomedicines 10:1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giau V, Wu S, Jamerlan A, An S, Kim S, Hulme J (2018) Gut microbiota and their neuroinflammatory implications in Alzheimer’s disease. Nutrients 10:1765

    Article  PubMed  PubMed Central  Google Scholar 

  • Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–63

    Article  ADS  CAS  PubMed  Google Scholar 

  • Goedert M (2015) Alzheimer’s and Parkinson’s diseases: the prion concept in relation to assembled Aβ, tau, and α-synuclein. Science 349:1255555

    Article  PubMed  Google Scholar 

  • Gomez de Agüero M, Ganal-Vonarburg SC, Fuhrer T, Rupp S, Uchimura Y, Li H et al (2016) The maternal microbiota drives early postnatal innate immune development. Science 351:1296–1302

  • Gómez-Isla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC et al (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease: neuronal Loss in the Superior Temporal Sulcus in Alzheimer’s Disease. Ann Neurol 41:17–24

    Article  PubMed  Google Scholar 

  • Gong Z, Ba L, Tang J, Yang Y, Li Z, Liu M et al (2023) Gut microbiota links with cognitive impairment in amyotrophic lateral sclerosis: a multi-omics study. J Biomed Res 37:125

    Article  Google Scholar 

  • Gorecki AM, Preskey L, Bakeberg MC, Kenna JE, Gildenhuys C, MacDougall G et al (2019) Altered gut microbiome in Parkinson’s disease and the influence of lipopolysaccharide in a human α-synuclein over-expressing mouse model. Front Neurosci 13:839

    Article  PubMed  PubMed Central  Google Scholar 

  • Gries M, Christmann A, Schulte S, Weyland M, Rommel S, Martin M et al (2021) Parkinson mice show functional and molecular changes in the gut long before motoric disease onset. Mol Neurodegener 16:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gubert C, Kong G, Renoir T, Hannan AJ (2020) Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegenerative diseases. Neurobiol Dis 134:104621

    Article  CAS  PubMed  Google Scholar 

  • Gubert C, Gasparotto JH, Morais L (2022) Convergent pathways of the gut microbiota–brain axis and neurodegenerative disorders. Gastroenterol Rep 10:goac017

  • Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y (2020) Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener 15:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamilton RL (2006) Lewy bodies in Alzheimer’s disease: a neuropathological review of 145 cases using α-synuclein immunohistochemistry. Brain Pathol 10:378–384

    Article  PubMed Central  Google Scholar 

  • Han Y, Wang B, Gao H, He C, Hua R, Liang C et al (2022) Vagus nerve and underlying impact on the gut microbiota-brain axis in behavior and neurodegenerative diseases. J Inflamm Res 15:6213–6230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haran JP, Bhattarai SK, Foley SE, Dutta P, Ward DV, Bucci V et al (2019) Alzheimer’s disease microbiome is associated with dysregulation of the anti-inflammatory p-glycoprotein pathway. mBio 10:e00632–006319

  • Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W et al (2017) Amyotrophic lateral sclerosis. Nat Rev Dis Primer 3:17071

    Article  Google Scholar 

  • Harrison IF, Anis HK, Dexter DT (2016) Associated degeneration of ventral tegmental area dopaminergic neurons in the rat nigrostriatal lactacystin model of parkinsonism and their neuroprotection by valproate. Neurosci Lett 614:16–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan N, Yang H (2019) Factors affecting the composition of the gut microbiota, and its modulation. PeerJ 7:e7502

    Article  PubMed  PubMed Central  Google Scholar 

  • Heijtz RD, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A et al (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci 108:3047–3052

    Article  ADS  CAS  PubMed Central  Google Scholar 

  • Hill JM, Lukiw WJ (2015) Microbial-generated amyloids and Alzheimer’s disease (AD). Front Aging Neurosci 7

  • Hoffner G, Island ML, Djian P (2005) Purification of neuronal inclusions of patients with Huntington’s disease reveals a broad range of N-terminal fragments of expanded huntingtin and insoluble polymers: Huntingtin fragments and polymers in inclusions. J Neurochem 95:125–136

    Article  CAS  PubMed  Google Scholar 

  • Hoffner G, Soues S, Djian P (2007) Aggregation of expanded huntingtin in the brains of patients with Huntington disease. Prion 1:26–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Holmqvist S, Chutna O, Bousset L, Aldrin-Kirk P, Li W, Björklund T et al (2014) Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol (berl) 128:805–820

    Article  PubMed  Google Scholar 

  • Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336:1268–1273

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C et al (2022) Microbiota in health and diseases. Signal Transduct Target Ther 7:135

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu X, Wang T, Jin F (2016) Alzheimer’s disease and gut microbiota. Sci China Life Sci 59:1006–1023

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ivanov II, Frutos R de L, Manel N, Yoshinaga K, Rifkin DB, Sartor RB et al (2008) Specific microbiota direct the differentiation of IL-17-producing T-Helper cells in the mucosa of the small intestine. Cell Host Microbe 4:337–349

  • Jaarsma D, Haasdijk ED, Grashorn JAC, Hawkins R, van Duijn W, Verspaget HW et al (2000) Human Cu/Zn Superoxide Dismutase (SOD1) Overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis Mutant SOD1. Neurobiol Dis 7:623–643

    Article  CAS  PubMed  Google Scholar 

  • Jandhyala SM (2015) Role of the normal gut microbiota. World J Gastroenterol 21:8787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y et al (2015) Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 48:186–194

    Article  PubMed  Google Scholar 

  • Jin Y, Wu S, Zeng Z, Fu Z (2017) Effects of environmental pollutants on gut microbiota. Environ Pollut 222:1–9

    Article  CAS  PubMed  Google Scholar 

  • Kaur SJ, McKeown SR, Rashid S (2016) Mutant SOD1 mediated pathogenesis of Amyotrophic Lateral Sclerosis. Gene 577:109–118

    Article  CAS  PubMed  Google Scholar 

  • Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG (2021) The role of the gut microbiome in the development of schizophrenia. Schizophr Res 234:4–23

    Article  CAS  PubMed  Google Scholar 

  • Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB et al (2015) Colonic bacterial composition in Parkinson’s disease: COLONIC MICROBIOTA IN PARKINSON’S DISEASE. Mov Disord 30:1351–1360

    Article  CAS  PubMed  Google Scholar 

  • Kesika P, Suganthy N, Sivamaruthi BS, Chaiyasut C (2021) Role of gut-brain axis, gut microbial composition, and probiotic intervention in Alzheimer’s disease. Life Sci 264:118627

    Article  CAS  PubMed  Google Scholar 

  • Kim CH (2021) Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids. Cell Mol Immunol 18:1161–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Kwon SH, Kam TI, Panicker N, Karuppagounder SS, Lee S et al (2019) Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease. Neuron 103:627-641.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King CH, Desai H, Sylvetsky AC, LoTempio J, Ayanyan S, Carrie J et al (2018) Baseline human gut microbiota profile in healthy people and standard reporting template [Internet]. Microbiology  [cited 2023 Oct 6]. Available from: http://biorxiv.org/lookup/doi.org/10.1101/445353

  • Knuesel T, Mohajeri MH (2021) The role of the gut microbiota in the development and progression of major depressive and bipolar disorder. Nutrients 14:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong G, Cao KAL, Judd LM, Li S, Renoir T, Hannan AJ (2020) Microbiome profiling reveals gut dysbiosis in a transgenic mouse model of Huntington’s disease. Neurobiol Dis 135:104268

    Article  CAS  PubMed  Google Scholar 

  • Kuai X yi, Yao X han, Xu L juan, Zhou Y qing, Zhang L ping, Liu Y et al (2021) Evaluation of fecal microbiota transplantation in Parkinson’s disease patients with constipation. Microb Cell Factories 20:98

  • Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebouvier T, Chaumette T, Paillusson S, Duyckaerts C, Bruley des Varannes S, Neunlist M et al (2009) The second brain and Parkinson’s disease. Eur J Neurosci 30:735–741

  • Lee VMY, Goedert M, Trojanowski JQ (2001) Neurodegenerative Tauopathies. Annu Rev Neurosci 24:1121–1159

    Article  CAS  PubMed  Google Scholar 

  • Leng F, Edison P (2021) Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 17:157–172

    Article  PubMed  Google Scholar 

  • Lethbridge L, Johnston GM, Turnbull G (2013) Co-morbidities of persons dying of Parkinson’s disease. Prog Palliat Care 21:140–145. https://doi.org/10.1179/1743291X12Y.0000000037

    Article  PubMed  PubMed Central  Google Scholar 

  • Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E (2017) Dysbiosis and the immune system. Nat Rev Immunol 17:219–232

    Article  CAS  PubMed  Google Scholar 

  • Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Barres BA (2018) Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol 18:225–242

    Article  CAS  PubMed  Google Scholar 

  • Li W, Wu X, Hu X, Wang T, Liang S, Duan Y et al (2017) Structural changes of gut microbiota in Parkinson’s disease and its correlation with clinical features. Sci China Life Sci 60:1223–1233

    Article  ADS  PubMed  Google Scholar 

  • Li S, Zhuo M, Huang X, Huang Y, Zhou J, Xiong D et al (2020) Altered gut microbiota associated with symptom severity in schizophrenia. PeerJ 8:e9574

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Ni J, Qing H (2021) Gut Microbiota: Critical Controller and Intervention Target in Brain Aging and Cognitive Impairment. Front Aging Neurosci 13:671142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Wu L, Peng G, Han Y, Tang R, Ge J et al (2019) Altered microbiomes distinguish Alzheimer’s disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain Behav Immun 80:633–643

    Article  PubMed  Google Scholar 

  • Lloyd-Price J, Abu-Ali G, Huttenhower C (2016) The healthy human microbiome. Genome Med 8:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Longinetti E, Fang F (2019) Epidemiology of amyotrophic lateral sclerosis: an update of recent literature. Curr Opin Neurol 32:771–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu G, Wen Q, Cui B, Li Q, Zhang F (2023) Washed microbiota transplantation stopped the deterioration of amyotrophic lateral sclerosis: the first case report and narrative review. J Biomed Res 37:69

    Article  Google Scholar 

  • Lundgren SN, Madan JC, Emond JA, Morrison HG, Christensen BC, Karagas MR et al (2018) Maternal diet during pregnancy is related with the infant stool microbiome in a delivery mode-dependent manner. Microbiome 6:109

    Article  PubMed  PubMed Central  Google Scholar 

  • Lynch C. World Alzheimer Report (2019) Attitudes to dementia, a global survey: public health: Engaging people in ADRD research. Alzheimers Dement 2020:16

    Google Scholar 

  • Lynch SV, Pedersen O (2016) The human intestinal microbiome in health and disease. N Engl J Med 375:2369–2379

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Xing C, Long W, Wang HY, Liu Q, Wang RF (2019) Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. J Neuroinflammation 16:53

    Article  PubMed  PubMed Central  Google Scholar 

  • Macdonald M (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  • Macpherson AJ, Geuking MB, McCoy KD (2005) Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria. Immunology 115:153–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magen I, Fleming SM, Zhu C, Garcia EC, Cardiff KM, Dinh D et al (2012) Cognitive deficits in a mouse model of pre-manifest Parkinson’s disease. Eur J Neurosci 35:870–882

    Article  PubMed  PubMed Central  Google Scholar 

  • Maqsood R, Stone TW (2016) The Gut-Brain Axis, BDNF, NMDA and CNS Disorders. Neurochem Res 41:2819–2835

    Article  CAS  PubMed  Google Scholar 

  • Mayer EA, Tillisch K, Gupta A (2015) Gut/brain axis and the microbiota. J Clin Invest 125:926–938

    Article  PubMed  PubMed Central  Google Scholar 

  • Maynard CL, Elson CO, Hatton RD, Weaver CT (2012) Reciprocal interactions of the intestinal microbiota and immune system. Nature 489:231–241

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118

    Article  CAS  PubMed  Google Scholar 

  • Mazzini L, Mogna L, De Marchi F, Amoruso A, Pane M, Aloisio I et al (2018) Potential role of gut microbiota in ALS pathogenesis and possible novel therapeutic strategies. J Clin Gastroenterol 52:S68-70

    Article  CAS  PubMed  Google Scholar 

  • Mehrabi NF, Waldvogel HJ, Tippett LJ, Hogg VM, Synek BJ, Faull RLM (2016) Symptom heterogeneity in Huntington’s disease correlates with neuronal degeneration in the cerebral cortex. Neurobiol Dis 96:67–74

    Article  PubMed  Google Scholar 

  • Melhem H, Kaya B, Ayata CK, Hruz P, Niess JH (2019) Metabolite-sensing G protein-coupled receptors connect the diet-microbiota-metabolites axis to inflammatory bowel disease. Cells 8:450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miana-Mena FJ, González-Mingot C, Larrodé P, Muñoz MJ, Oliván S, Fuentes-Broto L et al (2011) Monitoring systemic oxidative stress in an animal model of amyotrophic lateral sclerosis. J Neurol 258:762–769

    Article  CAS  PubMed  Google Scholar 

  • Moffitt H, McPhail GD, Woodman B, Hobbs C, Bates GP (2009) Formation of polyglutamine inclusions in a wide range of non-CNS tissues in the HdhQ150 knock-in mouse model of Huntington’s disease. PLoS ONE 4:e8025

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Mohajeri MH, Brummer RJM, Rastall RA, Weersma RK, Harmsen HJM, Faas M et al (2018) The role of the microbiome for human health: from basic science to clinical applications. Eur J Nutr 57:1–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammadkhah AI, Simpson EB, Patterson SG, Ferguson JF (2018) Development of the gut microbiome in children, and lifetime implications for obesity and cardiometabolic disease. Children 5:160

    Article  PubMed  PubMed Central  Google Scholar 

  • Monda V, Villano I, Messina A, Valenzano A, Esposito T, Moscatelli F et al (2017) Exercise modifies the gut microbiota with positive health effects. Oxid Med Cell Longev 2017:1–8

    Article  Google Scholar 

  • Morton JT, Marotz C, Washburne A, Silverman J, Zaramela LS, Edlund A et al (2019) Establishing microbial composition measurement standards with reference frames. Nat Commun 10:2719

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Mulak A, Bonaz B (2015) Brain-gut-microbiota axis in Parkinson’s disease. World J Gastroenterol 21:10609–10620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musser MA, Michelle S-S (2013) Balancing on the crest – evidence for disruption of the enteric ganglia via inappropriate lineage segregation and consequences for gastrointestinal function. Dev Biol 382:356–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair AT, Ramachandran V, Joghee NM, Antony S, Ramalingam G (2018) Gut Microbiota dysfunction as reliable non-invasive early diagnostic biomarkers in the pathophysiology of Parkinson’s disease: a critical review. J Neurogastroenterol Motil 24:30–42

    Article  PubMed  PubMed Central  Google Scholar 

  • Needham BD, Kaddurah-Daouk R, Mazmanian SK (2020) Gut microbial molecules in behavioural and neurodegenerative conditions. Nat Rev Neurosci 21:717–731

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TT, Kosciolek T, Daly RE, Vázquez-Baeza Y, Swafford A, Knight R et al (2021) Gut microbiome in Schizophrenia: Altered functional pathways related to immune modulation and atherosclerotic risk. Brain Behav Immun 91:245–256

    Article  CAS  PubMed  Google Scholar 

  • Niccoli T, Partridge L, Isaacs AM (2017) Ageing as a risk factor for ALS/FTD. Hum Mol Genet 26:R105–R113

    Article  CAS  PubMed  Google Scholar 

  • Nichols E, Steinmetz JD, Vollset SE, Fukutaki K, Chalek J, Abd-Allah F et al (2022) Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health 7:e105–e125

    Article  Google Scholar 

  • O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Toole PW, Jeffery IB (2015) Gut microbiota and aging. Science 350:1214–1215

    Article  ADS  PubMed  Google Scholar 

  • Oswal A, Cao C, Yeh CH, Neumann WJ, Gratwicke J, Akram H et al (2021) Neural signatures of hyperdirect pathway activity in Parkinson’s disease. Nat Commun 12:5185

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Parhizkar S, Holtzman DM (2022) APOE mediated neuroinflammation and neurodegeneration in Alzheimer’s disease. Semin Immunol 59:101594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascoal TA, Benedet AL, Ashton NJ, Kang MS, Therriault J, Chamoun M et al (2021) Publisher correction: microglial activation and tau propagate jointly across Braak stages. Nat Med 27:2048–2049

  • Pei Z, Bini EJ, Yang L, Zhou M, Francois F, Blaser MJ (2004) Bacterial biota in the human distal esophagus. Proc Natl Acad Sci 101:4250–4255

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen A (2001) Expanded CAG repeats in exon 1 of the Huntington’s disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration. Hum Mol Genet 10:1243–1254

    Article  CAS  Google Scholar 

  • Peterson CT (2020) Dysfunction of the microbiota-gut-brain axis in neurodegenerative disease: the promise of therapeutic modulation with prebiotics, medicinal herbs, probiotics, and synbiotics. J Evid-Based Integr Med 25:2515690X2095722

  • Peterson J, Garges S, Giovanni M, McInnes P, Wang L et al (2009) The NIH HMP Working Group. The NIH human microbiome project. Genome Res 19:2317–2323

  • Pringsheim T, Wiltshire K, Day L, Dykeman J, Steeves T, Jette N (2012) The incidence and prevalence of Huntington’s disease: a systematic review and meta-analysis. Mov Disord 27:1083–1091

    Article  PubMed  Google Scholar 

  • Pringsheim T, Fiest K, Jette N (2014) The international incidence and prevalence of neurologic conditions: How common are they? Neurology 83:1661–1664

    Article  PubMed  PubMed Central  Google Scholar 

  • Quintanilla RA, Orellana DI, González-Billault C, Maccioni RB (2004) Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Exp Cell Res 295:245–257

    Article  CAS  PubMed  Google Scholar 

  • Reigstad CS, Salmonson CE, Iii JFR, Szurszewski JH, Linden DR, Sonnenburg JL et al (2015) Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J 29:1395–1403

    Article  CAS  PubMed  Google Scholar 

  • Remy P, Doder M, Lees A, Turjanski N, Brooks D (2005) Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain 128:1314–1322

    Article  PubMed  Google Scholar 

  • Reynoso-García J, Miranda-Santiago AE, Meléndez-Vázquez NM, Acosta-Pagán K, Sánchez-Rosado M, Díaz-Rivera J et al (2022) A complete guide to human microbiomes: Body niches, transmission, development, dysbiosis, and restoration. Front Syst Biol 2:951403

    Article  Google Scholar 

  • Rieder R, Wisniewski PJ, Alderman BL, Campbell SC (2017) Microbes and mental health: a review. Brain Behav Immun 66:9–17

    Article  CAS  PubMed  Google Scholar 

  • Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano G, Gasbarrini A et al (2019) What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S et al (2015) The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect 6:22–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosas HD, Salat DH, Lee SY, Zaleta AK, Hevelone N, Hersch SM (2008) Complexity and heterogeneity: what drives the ever-changing brain in Huntington’s disease? Ann N Y Acad Sci 1147:196–205

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ross CA, Aylward EH, Wild EJ, Langbehn DR, Long JD, Warner JH et al (2014) Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol 10:204–216

    Article  CAS  PubMed  Google Scholar 

  • Rowin J, Xia Y, Jung B, Sun J (2017) Gut inflammation and dysbiosis in human motor neuron disease. Physiol Rep 5:e13443

    Article  PubMed  PubMed Central  Google Scholar 

  • Sala Frigerio C, Wolfs L, Fattorelli N, Thrupp N, Voytyuk I, Schmidt I et al (2019) The major risk factors for Alzheimer’s disease: age, sex, and genes modulate the microglia response to Aβ plaques. Cell Rep 27:1293-1306.e6

    Article  CAS  PubMed  Google Scholar 

  • Salim S (2017) Oxidative stress and the central nervous system. J Pharmacol Exp Ther 360:201–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167:1469-1480.e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savkovic SD (2020) Gut microbes effects on host metabolic alterations in health and disease. Gut Microbes 11:249–252

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt TM, DeLong EF, Pace NR (1991) Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol 173:4371–4378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott DA, Tabarean I, Tang Y, Cartier A, Masliah E, Roy S (2010) A pathologic cascade leading to synaptic dysfunction in α-synuclein-induced neurodegeneration. J Neurosci 30:8083–8095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott KA, Ida M, Peterson VL, Prenderville JA, Moloney GM, Izumo T et al (2017) Revisiting Metchnikoff: Age-related alterations in microbiota-gut-brain axis in the mouse. Brain Behav Immun 65:20–32

    Article  PubMed  Google Scholar 

  • Shannon KM, Keshavarzian A, Mutlu E, Dodiya HB, Daian D, Jaglin JA et al (2012) Alpha-synuclein in colonic submucosa in early untreated Parkinson’s disease: colonic α-Synuclein in Parkinson’s Disease. Mov Disord 27:709–715

    Article  PubMed  Google Scholar 

  • Sheng JG, Ito K, Skinner RD, Mrak RE, Rovnaghi CR, van Eldik LJ et al (1996) In vivo and in vitro evidence supporting a role for the inflammatory cytokine interleukin-1 as a driving force in Alzheimer pathogenesis. Neurobiol Aging 17:761–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva YP, Bernardi A, Frozza RL (2020) The Role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol 11:25

    Article  Google Scholar 

  • Singh Y, Trautwein C, Romani J, Salker MS, Neckel PH, Fraccaroli I et al (2023) Overexpression of human alpha-Synuclein leads to dysregulated microbiome/metabolites with ageing in a rat model of Parkinson disease. Mol Neurodegener 18:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonnenburg JL, Sonnenburg ED (2019) Vulnerability of the industrialized microbiota. Science 366:eaaw9255

  • Stahl DA, Lane DJ, Olsen GJ, Pace NR (1984) Analysis of Hydrothermal vent-associated symbionts by ribosomal RNA sequences. Science 224:409–411

    Article  ADS  CAS  PubMed  Google Scholar 

  • Stan TL, Soylu-Kucharz R, Burleigh S, Prykhodko O, Cao L, Franke N et al (2020) Increased intestinal permeability and gut dysbiosis in the R6/2 mouse model of Huntington’s disease. Sci Rep 10:18270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinman L (2004) Elaborate interactions between the immune and nervous systems. Nat Immunol 5:575–581

    Article  CAS  PubMed  Google Scholar 

  • Strandwitz P (2018) Neurotransmitter modulation by the gut microbiota. Brain Res 1693:128–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swann J, Wang Y, Abecia L, Costabile A, Tuohy K, Gibson G et al (2009) Gut microbiome modulates the toxicity of hydrazine: a metabonomic study. Mol Biosyst 5:351

    Article  CAS  PubMed  Google Scholar 

  • Tamtaji OR, Taghizadeh M, Daneshvar Kakhaki R, Kouchaki E, Bahmani F, Borzabadi S et al (2019) Clinical and metabolic response to probiotic administration in people with Parkinson’s disease: a randomized, double-blind, placebo-controlled trial. Clin Nutr 38:1031–1035

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Zhu H, Feng Y, Guo R, Wan D (2020) The impact of gut microbiota disorders on the blood–brain barrier. Infect Drug Resist 13:3351–3363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor JD, Matthews SJ (2015) New insight into the molecular control of bacterial functional amyloids. Front Cell Infect Microbiol 5

  • The ALSUntangled Group (2013) ALS Untangled No. 21: fecal transplants. Amyotroph. Lateral Scler Front Degener 14:482–485

  • The Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214

    Article  ADS  PubMed Central  Google Scholar 

  • Theodore S, Cao S, McLean PJ, Standaert DG (2008) Targeted overexpression of human α-synuclein triggers microglial activation and an adaptive immune response in a mouse model of Parkinson disease. J Neuropathol Exp Neurol 67:1149–1158

    Article  CAS  PubMed  Google Scholar 

  • Thevaranjan N, Puchta A, Schulz C, Naidoo A, Szamosi JC, Verschoor CP et al (2017) Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 21:455-466.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner MR, Barnwell J, Al-Chalabi A, Eisen A (2012) Young-onset amyotrophic lateral sclerosis: historical and other observations. Brain 135:2883–2891

    Article  PubMed  Google Scholar 

  • Ueki A, Otsuka M (2004) Life style risks of Parkinson’s disease: association between decreased water intake and constipation. J Neurol 251:vii18–23

  • Unger MM, Hattemer K, Möller JC, Schmittinger K, Mankel K, Eggert K et al (2010) Real-time visualization of altered gastric motility by magnetic resonance imaging in patients with Parkinson’s disease. Mov Disord 25:623–628

    Article  PubMed  Google Scholar 

  • van der Burg JMM, Winqvist A, Aziz NA, Maat-Schieman MLC, Roos RAC, Bates GP et al (2011) Gastrointestinal dysfunction contributes to weight loss in Huntington’s disease mice. Neurobiol Dis 44:1–8

    Article  PubMed  Google Scholar 

  • Verhelst R, Verstraelen H, Claeys G, Verschraegen G, Delanghe J, Van Simaey L et al (2004) Cloning of 16S rRNA genes amplified from normal and disturbed vaginal microflora suggests a strong association between Atopobium vaginae, Gardnerella vaginalis and bacterial vaginosis. BMC Microbiol 4:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC et al (2017) Gut microbiome alterations in Alzheimer’s disease. Sci Rep 7:13537

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Wallen ZD, Demirkan A, Twa G, Cohen G, Dean MN, Standaert DG et al (2022) Metagenomics of Parkinson’s disease implicates the gut microbiome in multiple disease mechanisms. Nat Commun 13:6958

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter J, Ley R (2011) The Human Gut Microbiome: Ecology and Recent Evolutionary Changes. Annu Rev Microbiol 65:411–429

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhou Y, Ren JJ, Hammer ND, Chapman MR (2010) Gatekeeper residues in the major curlin subunit modulate bacterial amyloid fiber biogenesis. Proc Natl Acad Sci 107:163–168

    Article  ADS  CAS  PubMed  Google Scholar 

  • Wang L, Magen I, Yuan PQ, Subramaniam SR, Richter F, Chesselet MF et al (2012) Mice overexpressing wild-type human alpha-synuclein display alterations in colonic myenteric ganglia and defecation: α-Synuclein overexpressing mice and distal colon. Neurogastroenterol Motil 24:e425–e436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasser CI, Mercieca EC, Kong G, Hannan AJ, McKeown SJ, Glikmann-Johnston Y et al (2020) Gut dysbiosis in Huntington’s disease: associations among gut microbiota, cognitive performance and clinical outcomes. Brain Commun 2:fcaa110

  • Watanabe Y, Someya T, Nawa H (2010) Cytokine hypothesis of schizophrenia pathogenesis: Evidence from human studies and animal models: cytokine hypothesis of schizophrenia. Psychiatry Clin Neurosci 64:217–230

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Wang S, Xu C, Zhou X, Lian X, He L et al (2022) Gut microbiota, pathogenic proteins and neurodegenerative diseases. Front Microbiol 13:959856

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiss GA, Hennet T (2017) Mechanisms and consequences of intestinal dysbiosis. Cell Mol Life Sci 74:2959–2977

    Article  CAS  PubMed  Google Scholar 

  • WHO (2020) WHO methods and data sources for global burden of disease estimates 2000–2019 [Internet]. Available from: https://cdn.who.int/media/docs/default-source/gho-documents/global-health-estimates/ghe2019_daly-methods.pdf?sfvrsn=31b25009_7

  • Wild EJ, Mudanohwo EE, Sweeney MG, Schneider SA, Beck J, Bhatia KP et al (2008) Huntington’s disease phenocopies are clinically and genetically heterogeneous. Mov Disord 23:716–720

    Article  PubMed  Google Scholar 

  • Wilmanski T, Diener C, Rappaport N, Patwardhan S, Wiedrick J, Lapidus J et al (2021) Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat Metab 3:274–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci 74:5088–5090

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR, Olsen GJ (1986) Archaebacterial phylogeny: perspectives on the Urkingdoms. Syst Appl Microbiol 7:161–177

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Yi J, Zhang Y guo, Zhou J, Sun J (2015) Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiol Rep 3:e12356

  • Xu J, Gordon JI (2003) Honor thy symbionts. Proc Natl Acad Sci 100:10452–10459

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu HM, Huang HL, Zhou YL, Zhao HL, Xu J, Shou DW et al (2021) Fecal microbiota transplantation: a new therapeutic attempt from the gut to the brain. Gastroenterol Res Pract 2021:1–20

    Google Scholar 

  • Xue LJ, Yang XZ, Tong Q, Shen P, Ma SJ, Wu SN et al (2020) Fecal microbiota transplantation therapy for Parkinson’s disease: a preliminary study. Medicine (baltimore) 99:e22035

    Article  PubMed  Google Scholar 

  • Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L et al (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161:264–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarandi SS, Peterson DA, Treisman GJ, Moran TH, Pasricha PJ (2016) Modulatory effects of gut microbiota on the central nervous system: how gut could play a role in neuropsychiatric health and diseases. J Neurogastroenterol Motil 22:201–212

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng Q, Shen J, Chen K, Zhou J, Liao Q, Lu K et al (2020) The alteration of gut microbiome and metabolism in amyotrophic lateral sclerosis patients. Sci Rep 10:12998

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai CD, Zheng JJ, An BC, Huang HF, Tan ZC (2019) Intestinal microbiota composition in patients with amyotrophic lateral sclerosis: establishment of bacterial and archaeal communities analyses. Chin Med J (engl) 132:1815–1822

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Yun Y, An H, Zhao W, Ma T, Wang Z et al (2021) Gut microbiome composition associated with major depressive disorder and sleep quality. Front Psychiatry 12:645045

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y guo, Wu S, Yi J, Xia Y, Jin D, Zhou J et al (2017) Target intestinal microbiota to alleviate disease progression in amyotrophic lateral sclerosis. Clin Ther 39:322–326

  • Zhao Z, Wang B, Mu L, Wang H, Luo J, Yang Y et al (2020) Long-term exposure to ceftriaxone sodium induces alteration of gut microbiota accompanied by abnormal behaviors in mice. Front Cell Infect Microbiol 10:258

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng D, Liwinski T, Elinav E (2020) Interaction between microbiota and immunity in health and disease. Cell Res 30:492–506

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou W, Hurlbert MS, Schaack J, Prasad KN, Freed CR (2000) Overexpression of human α-synuclein causes dopamine neuron death in rat primary culture and immortalized mesencephalon-derived cells. Brain Res 866:33–43

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Bent SJ, Schneider MG, Davis CC, Islam MR, Forney LJ (2004) Characterization of vaginal microbial communities in adult healthy women using cultivation-independent methods. Microbiology 150:2565–2573

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Smith D, Leong BJ, Brännström K, Almqvist F, Chapman MR (2012) Promiscuous cross-seeding between bacterial amyloids promotes interspecies biofilms. J Biol Chem 287:35092–35103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoghbi HY, Orr HT (2000) Glutamine repeats and neurodegeneration. Annu Rev Neurosci 23:217–247

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by ANID, FONDECYT # 1200178 (RAQ). MAO, LN, and CI were supported by Ph.D. Fellowship from Universidad Autónoma de Chile.

Author information

Authors and Affiliations

Authors

Contributions

FVT and MAO wrote and edited the manuscript; MAO produced manuscript figures; LN, NC, and CI write the manuscript; KG and GC edited the final draft of the manuscript; RAQ conceived and edited the final draft of the manuscript. Figures were made using Biorender.

Corresponding author

Correspondence to Rodrigo A. Quintanilla.

Ethics declarations

Ethical Approval

N/A.

Competing Interests

The authors declare not competing interests regarding this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villavicencio-Tejo, F., Olesen, M.A., Navarro, L. et al. Gut-Brain Axis Deregulation and Its Possible Contribution to Neurodegenerative Disorders. Neurotox Res 42, 4 (2024). https://doi.org/10.1007/s12640-023-00681-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12640-023-00681-0

Keywords

Navigation