Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

m6A reader IGF2BP2 promotes lymphatic metastasis by stabilizing DPP4 in papillary thyroid carcinoma

Subjects

Abstract

Lymph node metastasis (LNM) is a major cause of locoregional recurrence of papillary thyroid carcinoma (PTC). However, the mechanisms responsible for LNM are unclear. Aberrant N6-methyladenosine (m6A) RNA modification plays a vital role in cancer progression and metastasis, and whether m6A modification regulates LNM in PTC remains to be determined. This study showed that IGF2BP2 was upregulated in PTC and positively associated with LNM. Functionally, IGF2BP2 knockdown significantly inhibited PTC cell proliferation and invasion in vitro, and vice versa. Moreover, IGF2BP2 knockdown significantly inhibited lymphatic metastasis in vivo. Mechanistically, Human m6A epitranscriptomic microarray, MeRIP, and RIP assays demonstrated that IGF2BP2 activated the NF-KB pathway by enhancing DPP4 stability in an m6A-dependent manner. Furthermore, IGF2BP2 knockdown increased the sensitivity of PTC cells to cisplatin therapy to a certain extent, while its overexpression produced the opposite effects. Overall, this study uncovers that IGF2BP2 promotes lymphatic metastasis via stabilizing DPP4 in an m6A-dependent manner, and provides new insights for understanding the mechanism of lymphatic metastasis in PTC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A nomogram was constructed for predicting the LNM of PTC.
Fig. 2: IGF2BP2 was a potential predictive marker for LNM in PTC.
Fig. 3: Knockdown of IGF2BP2 inhibited the proliferation, migration, and invasion of PTC cells in vitro.
Fig. 4: Overexpression of IGF2BP2 promoted the proliferation, migration, and invasion of PTC cells in vitro.
Fig. 5: IGF2BP2 knockdown suppressed the lymphatic metastasis in vivo.
Fig. 6: IGF2BP2 enhanced the stability of DPP4 mRNA via m6A modification.
Fig. 7: IGF2BP2/DPP4 axis regulated the proliferation and invasion of PTC cells.
Fig. 8: IGF2BP2/DPP4 axis modulated the NF-KB signaling pathway in PTC cells.
Fig. 9: IGF2BP2 knockdown enhanced the chemosensitivity of PTC cells.
Fig. 10: A graphic illustration of the proposed mechanism in this study.

Similar content being viewed by others

Data availability

All data analyzed in this study are available from the corresponding author upon reasonable request.

Code availability

All codes analyzed in this study are available from the corresponding author upon reasonable request.

References

  1. Kitahara CM, Sosa JA. Understanding the ever-changing incidence of thyroid cancer. Nat Rev Endocrinol. 2020;16:617–8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang W, Bai N, Li X. Comprehensive analysis of the prognosis and drug sensitivity of differentiation-related lncRNAs in papillary thyroid cancer. Cancers. 2022;14:1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fagin JA, Wells SA Jr. Biologic and clinical perspectives on thyroid cancer. N Engl J Med. 2016;375:1054–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ho AS, Luu M, Barrios L, Chen I, Melany M, Ali N, et al. Incidence and mortality risk spectrum across aggressive variants of papillary thyroid carcinoma. JAMA Oncol. 2020;6:706–13.

    Article  PubMed  Google Scholar 

  5. Wang W, Ding Y, Jiang W, Li X. Can cervical lymph node metastasis increase the risk of distant metastasis in papillary thyroid carcinoma? Front Endocrinol. 2022;13:917794.

    Article  Google Scholar 

  6. Wang W, Shen C, Yang Z. Nomogram individually predicts the risk for distant metastasis and prognosis value in female differentiated thyroid cancer patients: a SEER-based study. Front Oncol. 2022;12:800639.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chen Y, Lin Y, Shu Y, He J, Gao W. Interaction between N6-methyladenosine (m6A) modification and noncoding RNAs in cancer. Mol Cancer. 2020;19:94.

    Article  PubMed  PubMed Central  Google Scholar 

  8. He L, Li H, Wu A, Peng Y, Shu G, Yin G. Functions of N6-methyladenosine and its role in cancer. Mol Cancer. 2019;18:176.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhao Y, Shi Y, Shen H, Xie W. m6A-binding proteins: the emerging crucial performers in epigenetics. J Hematol Oncol. 2020;13:35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang W, Shen C, Zhao Y, Sun B, Qiu X, Yin S, et al. The role of m6A RNA methylation-related lncRNAs in the prognosis and tumor immune microenvironment of papillary thyroid carcinoma. Front Cell Dev Biol. 2021;9:719820.

    Article  PubMed  Google Scholar 

  11. Hua Z, Wei R, Guo M, Lin Z, Yu X, Li X, et al. YTHDF2 promotes multiple myeloma cell proliferation via STAT5A/MAP2K2/p-ERK axis. Oncogene. 2022;41:1482–91.

    Article  CAS  PubMed  Google Scholar 

  12. Xu X, Yu Y, Zong K, Lv P, Gu Y. Up-regulation of IGF2BP2 by multiple mechanisms in pancreatic cancer promotes cancer proliferation by activating the PI3K/Akt signaling pathway. J Exp Clin Cancer Res. 2019;38:497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Feng P, Chen D, Wang X, Li Y, Li Z, Li B, et al. Inhibition of the m6A reader IGF2BP2 as a strategy against T-cell acute lymphoblastic leukemia. Leukemia. 2022;36:2180–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu X, He H, Zhang F, Hu X, Bi F, Li K, et al. m6A methylated EphA2 and VEGFA through IGF2BP2/3 regulation promotes vasculogenic mimicry in colorectal cancer via PI3K/AKT and ERK1/2 signaling. Cell Death Dis. 2022;13:483.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hu C, Liu T, Han C, Xuan Y, Jiang D, Sun Y, et al. HPV E6/E7 promotes aerobic glycolysis in cervical cancer by regulating IGF2BP2 to stabilize m6A-MYC expression. Int J Biol Sci. 2022;18:507–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Agarwal S, Chand G, Jaiswal S, Mishra A, Agarwal G, Agarwal A, et al. Pattern and risk factors of central compartment lymph node metastasis in papillary thyroid cancer: a prospective study from an endocrine surgery centre. J Thyroid Res. 2012;2012:436243.

    Article  PubMed  Google Scholar 

  17. Wang W, Yang Z, Ouyang Q. A nomogram to predict skip metastasis in papillary thyroid cancer. World J Surg Oncol. 2020;18:167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu J, Li Z, Su Q, Zhao J, Ma J. TRIM29 promotes progression of thyroid carcinoma via activating P13K/AKT signaling pathway. Oncol Rep. 2017;37:1555–64.

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Tao Y, Wang F, Shen X, Zhu G, Liu R, Viola D, et al. BRAF V600E status sharply differentiates lymph node metastasis-associated mortality risk in papillary thyroid cancer. J Clin Endocrinol Metab. 2021;106:3228–38.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang W, Bai N, Li X. A critical analysis of the current TNM classification for differentiated thyroid carcinoma in young patients: time for a change? Front Endocrinol. 2022;13:939131.

    Article  Google Scholar 

  21. Bonnet S, Hartl D, Leboulleux S, Baudin E, Lumbroso JD, Al Ghuzlan A, et al. Prophylactic lymph node dissection for papillary thyroid cancer less than 2 cm: implications for radioiodine treatment. J Clin Endocrinol Metab. 2009;94:1162–7.

    Article  CAS  PubMed  Google Scholar 

  22. Cisco RM, Shen WT, Gosnell JE. Extent of surgery for papillary thyroid cancer: preoperative imaging and role of prophylactic and therapeutic neck dissection. Curr Treat Options Oncol. 2012;13:1–10.

    Article  PubMed  Google Scholar 

  23. To B, Isaac D, Andrechek ER. Studying lymphatic metastasis in breast cancer: current models, strategies, and clinical perspectives. J Mammary Gland Biol Neoplasia. 2020;25:191–203.

    Article  PubMed  Google Scholar 

  24. Liu S, Chen X, Lin T. Lymphatic metastasis of bladder cancer: molecular mechanisms, diagnosis and targeted therapy. Cancer Lett. 2021;505:13–23.

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Yasuoka H, Nakamura Y, Zuo H, Tang W, Takamura Y, Miyauchi A, et al. VEGF-D expression and lymph vessels play an important role for lymph node metastasis in papillary thyroid carcinoma. Mod Pathol. 2005;18:1127–33.

    Article  CAS  PubMed  Google Scholar 

  26. Ranganath R, Dhillon VK, Shaear M, Rooper L, Russell JO, Tufano RP. Unusual locations for differentiated thyroid cancer nodal metastasis. World J Otorhinolaryngol Head Neck Surg. 2020;6:176–81.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xu SJ, Jin B, Zhao WJ, Chen XX, Tong YY, Ding XF, et al. The specifically androgen-regulated gene (SARG) promotes papillary thyroid carcinoma (PTC) lymphatic metastasis through vascular endothelial growth factor C (VEGF-C) and VEGF receptor 3 (VEGFR-3) axis. Front Oncol. 2022;12:817660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu X, Fu Q, Bian X, Fu Y, Xin J, Liang N, et al. Long non-coding RNA MAPK8IP1P2 inhibits lymphatic metastasis of thyroid cancer by activating Hippo signaling via sponging miR-146b-3p. Front Oncol. 2020;10:600927.

    Article  PubMed  Google Scholar 

  29. Wu L, Zhou Y, Guan Y, Xiao R, Cai J, Chen W, et al. Seven genes associated with lymphatic metastasis in thyroid cancer that is linked to tumor immune cell infiltration. Front Oncol. 2021;11:756246.

    Article  CAS  PubMed  Google Scholar 

  30. Hu Y, Gong C, Li Z, Liu J, Chen Y, Huang Y, et al. Demethylase ALKBH5 suppresses invasion of gastric cancer via PKMYT1 m6A modification. Mol Cancer. 2022;21:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Du A, Li S, Zhou Y, Disoma C, Liao Y, Zhang Y, et al. M6A-mediated upregulation of circMDK promotes tumorigenesis and acts as a nanotherapeutic target in hepatocellular carcinoma. Mol Cancer. 2022;21:109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu D, Pan M, Li Y, Lu T, Wang Z, Liu C, et al. RNA N6-methyladenosine reader IGF2BP2 promotes lymphatic metastasis and epithelial-mesenchymal transition of head and neck squamous carcinoma cells via stabilizing slug mRNA in an m6A-dependent manner. J Exp Clin Cancer Res. 2022;41:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guo H, Wang B, Xu K, Nie L, Fu Y, Wang Z, et al. m6A reader HNRNPA2B1 promotes esophageal cancer progression via up-regulation of ACLY and ACC1. Front Oncol. 2020;10:553045.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang Q, Guo X, Li L, Gao Z, Su X, Ji M, et al. N6-methyladenosine METTL3 promotes cervical cancer tumorigenesis and Warburg effect through YTHDF1/HK2 modification. Cell Death Dis. 2020;11:911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hu X, Peng WX, Zhou H, Jiang J, Zhou X, Huang D, et al. IGF2BP2 regulates DANCR by serving as an N6-methyladenosine reader. Cell Death Differ. 2020;27:1782–94.

    Article  CAS  PubMed  Google Scholar 

  36. Kameoka J, Tanaka T, Nojima Y, Schlossman SF, Morimoto C. Direct association of adenosine deaminase with a T cell activation antigen, CD26. Science. 1993;261:466–9.

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Ghorpade DS, Ozcan L, Zheng Z, Nicoloro SM, Shen Y, Chen E, et al. Hepatocyte-secreted DPP4 in obesity promotes adipose inflammation and insulin resistance. Nature. 2018;555:673–7.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee JJ, Wang TY, Liu CL, Chien MN, Chen MJ, Hsu YC, et al. Dipeptidyl peptidase IV as a prognostic marker and therapeutic target in papillary thyroid carcinoma. J Clin Endocrinol Metab. 2017;102:2930–40.

    Article  PubMed  Google Scholar 

  39. He Q, Cao H, Zhao Y, Chen P, Wang N, Li W, et al. DPP4 stabilizes integrin α4β1 complex to promote thyroid cancer cell metastasis by activating TGF-beta signaling pathway. Thyroid. 2022;32:1411–22.

  40. Zinatizadeh MR, Schock B, Chalbatani GM, Zarandi PK, Jalali SA, Miri SR. The nuclear factor kappa B (NF-kB) signaling in cancer development and immune diseases. Genes Dis. 2021;8:287–97.

    Article  CAS  PubMed  Google Scholar 

  41. Khongthong P, Roseweir AK, Edwards J. The NF-KB pathway and endocrine therapy resistance in breast cancer. Endocr Relat Cancer. 2019;26:R369–80.

    Article  CAS  PubMed  Google Scholar 

  42. Carneiro RM, Carneiro BA, Agulnik M, Kopp PA, Giles FJ. Targeted therapies in advanced differentiated thyroid cancer. Cancer Treat Rev. 2015;41:690–8.

    Article  CAS  PubMed  Google Scholar 

  43. Ferrari SM, Elia G, Ragusa F, Paparo SR, Mazzi V, Miccoli M, et al. Lenvatinib: an investigational agent for the treatment of differentiated thyroid cancer. Expert Opin Invest Drugs. 2021;30:913–21.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank all team members for their assistance in this work.

Author information

Authors and Affiliations

Authors

Contributions

WLW and XYL conceived and designed this study. WLW, YZZ, and YD performed the study and wrote the paper. YD and YYZ participated in data analysis. WLW and YYZ collected the tissues. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yunzhe Zhao or Xinying Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

The research was approved by the Ethics Committee of the Xiangya Hospital of Central South University. All animal studies were conducted in accordance with the principles and procedures outlined in the guidelines of the Institutional Animal Care and Use Committee (IACUC) of Central South University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Ding, Y., Zhao, Y. et al. m6A reader IGF2BP2 promotes lymphatic metastasis by stabilizing DPP4 in papillary thyroid carcinoma. Cancer Gene Ther 31, 285–299 (2024). https://doi.org/10.1038/s41417-023-00702-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-023-00702-2

Search

Quick links