Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 18, 2023

Simultaneous different mechanisms for the efficient synthesis of β-enaminones: 12-tungstocobaltic acid-supported on nano silica as an electron transfer and Brønsted acid nano catalyst

  • Mahtab Razlansari and Masoud Kahrizi EMAIL logo

Abstract

In the present study, 12-tungestocobaltic acid, H5CoW12O40, was immobilized on nano silica from rice husk (CoW@NSiO2) to develop a novel, efficient, heterogeneous and recyclable nano catalyst for the synthesis of β-enaminones. It is apparent from acidity and cyclic voltammetric measurements that, the catalyst is electroactive and undergoes reversible redox transitions, as well as it is contains strong acid sites and mobile protons. As evidenced from mechanistic investigations, CoW@NSiO2 can catalyze the synthesis of β-enaminones with two simultaneous ways: electron transfer and Brønsted acid mechanisms. In order to confirm the synthesis of enaminones through simultaneous mechanisms of electron transfer and acidity, the model reaction was carried out in the presence of K5Co as an electroactive catalyst and CoW@NSiO2 with electron scavenger as an acid catalyst. The results showed that the reaction proceeded simultaneously through both mechanisms. There is evidence that the electron transfer property of this catalyst is most pronounced in this type of organic reactions. The catalyst demonstrated outstanding performance, and the methodology proved to be versatile, yielding excellent results across a wide range of substrates. It is worth mentioning that aliphatic amines were well-tolerated in the process and produced β-enaminone compounds with excellent yields and short reaction times. Also, reactions with dimedone, a cyclic 1,3-diketone, delivered moderate product yields. Additionally, the catalyst showed remarkable recyclability, maintaining its activity for a minimum of five consecutive cycles without any noticeable decline. Notably, the cyclic voltammetric and acidity measurements revealed that the catalyst’s electron transfer property and Brønsted acidity remained unchanged after five runs.


Corresponding author: Masoud Kahrizi, Tehran Chemie Pharmaceutical Co., Tehran, 1378756411, I. R. Iran, E-mail:

Acknowledgments

The authors thank the Razi University Research Council for support of this work.

  1. Research ethics: The present study does not need to obtain ethical approval from relevant authorities or ethical committees.

  2. Author contributions: Mahtab Razlansari: writing the paper and doing the relevant analysis and answering the reviewers' questions Masoud Kahrizi: writing the paper and doing the relevant analysis and answering the reviewers' questions.

  3. Competing interests: All authors declare that they have no conflicts of interest.

  4. Research funding: This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

  5. Data availability: The data that support the findings of this study are available on request from the corresponding author.

References

1. Balalaie, S., Arabanian, A. Green Chem. 2000, 2, 274–276; https://doi.org/10.1039/b006201o.Search in Google Scholar

2. Mojtahedi, M. M., Alishiri, T., Alishiri, T. Tetrahedron Lett. 2009, 50, 2322–2325; https://doi.org/10.1016/j.tetlet.2009.02.199.Search in Google Scholar

3. Chang, Y. C., Chen, D. H. J. Hazard. Mater. 2009, 165, 664–669; https://doi.org/10.1016/j.jhazmat.2008.10.034.Search in Google Scholar PubMed

4. Nagarapu, L., Apuri, S., Kantevari, S. J. Mol. Catal. A: Chem. 2007, 266, 104–108; https://doi.org/10.1016/j.molcata.2006.10.056.Search in Google Scholar

5. Phan, A., Doonan, C. J., Uribe-Romo, F. J., Knobler, C. B., O’Keeffe, M., Yaghi, O. M. Acc. Chem. Res. 2009, 43, 58–67; https://doi.org/10.1021/ar900116g.Search in Google Scholar PubMed

6. Férey, G. Chem. Soc. Rev. 2008, 37, 191–214; https://doi.org/10.1039/b618320b.Search in Google Scholar PubMed

7. Kitagawa, S., Kitaura, R., Noro, S. I. Angew. Chem. Int. Ed. 2004, 43, 2334–2375; https://doi.org/10.1002/anie.200300610.Search in Google Scholar PubMed

8. Kholdeeva, O. A. Heterogeneous Catalysis Research Progress; Nova Science Pub.: New York, 2008; p. 267.Search in Google Scholar

9. Mizuno, N., Kamata, K., Yamaguchi, K. Surface and Nanomolecular Catalysis; CRC Press: Boca Raton, Fla, 2006.Search in Google Scholar

10. Li, G., Watson, K., Buckheit, R. W., Zhang, Y. Org. Lett. 2007, 9, 2043–2046; https://doi.org/10.1021/ol070748n.Search in Google Scholar PubMed

11. White, J. D., Ihle, D. C. Org. Lett. 2006, 8, 1081–1084; https://doi.org/10.1021/ol052955y.Search in Google Scholar PubMed

12. Abass, M., Mostafa, B. B. Bioorg. Med. Chem. 2005, 13, 6133–6144; https://doi.org/10.1016/j.bmc.2005.06.038.Search in Google Scholar PubMed

13. Russowsky, D., da Silveira Neto, B. A. Tetrahedron Lett. 2003, 44, 2923–2926; https://doi.org/10.1016/s0040-4039(03)00420-9.Search in Google Scholar

14. Epperon, M. T., Gin, D. Y. Angew. Chem. Int. Ed. 2002, 41, 1778–1780; https://doi.org/10.1002/1521-3773(20020517)41:10<1778::aid-anie1778>3.0.co;2-r.10.1002/1521-3773(20020517)41:10<1778::AID-ANIE1778>3.0.CO;2-RSearch in Google Scholar

15. Palmieri, G., Cimarelli, C. ARKIVOC 2006, 6, 104–126; https://doi.org/10.3998/ark.5550190.0007.611.Search in Google Scholar

16. Epifano, F., Genovese, S., Curini, M. Tetrahedron Lett. 2007, 48, 2717–2720; https://doi.org/10.1016/j.tetlet.2007.02.064.Search in Google Scholar

17. Das, B., Venkateswarlu, K., Majhi, A., Reddy, M. R., Reddy, K. N., Rao, Y. K., Ravikumar, K., Sridhar, B. J. Mol. Catal. A: Chem. 2006, 246, 276–281; https://doi.org/10.1016/j.molcata.2005.11.045.Search in Google Scholar

18. Bartoli, G., Bosco, M., Locatelli, M., Carlone, A., Marcantoni, E., Melchiorre, P., Sambri, L. Synlett 2004, 239–242.Search in Google Scholar

19. Zhang, Z. H., Yin, L., Wang, Y. M. Adv. Synth. Catal. 2006, 348, 184–190; https://doi.org/10.1002/adsc.200505268.Search in Google Scholar

20. Zhang, Z.-H., Hu, J.-Y. J. Braz. Chem. Soc. 2006, 17, 1447–1451; https://doi.org/10.1590/s0103-50532006000700038.Search in Google Scholar

21. Brandt, C. A., da Silva, A. C. M. P., Pancote, C. G., Brito, C. L., da Silveira, M. A. B. Synthesis 2004, 10, 1557–1559.10.1055/s-2004-829102Search in Google Scholar

22. Rechsteiner, B., Texier-Boullet, F., Hamelin, J. Tetrahedron Lett. 1993, 34, 5071–5074; https://doi.org/10.1016/s0040-4039(00)60678-0.Search in Google Scholar

23. Rao, C. N., Müller, H. C. M. A., Cheetham, A. K. The Chemistry of Nanomaterials: Synthesis Properties and Applications; Wiley VCH: Weinheim, 2004.10.1002/352760247XSearch in Google Scholar

24. Nagarapu, L., Kantevari, S., Mahankhali, V. C., Apuri, S. Catal. Commun. 2007, 8, 1173–1177; https://doi.org/10.1016/j.catcom.2006.11.003.Search in Google Scholar

25. Ghanbaripour, R., Mohammadpoor-Baltork, I., Moghadam, M., Khosropour, A. R., Tangestaninejad, S., Mirkhani, V. Polyhedron 2012, 31, 721–728; https://doi.org/10.1016/j.poly.2011.10.027.Search in Google Scholar

26. Iqbal, J., Bhatia, B., Nayyar, N. K. Tetrahedron 1991, 47, 6457–6468; https://doi.org/10.1016/s0040-4020(01)86573-x.Search in Google Scholar

27. Rafiee, E., Joshaghani, M., Eavani, S., Rashidzadeh, S. Green Chem. 2008, 10, 982–989; https://doi.org/10.1039/b803249a.Search in Google Scholar

28. Khodaei, M. M., Khosropour, A. R., Kookhazadeh, M. Synlett 2004, 1980–1984; https://doi.org/10.1055/s-2004-830879.Search in Google Scholar

29. Khodaei, M. M., Khosropour, A. R., Kookhazadeh, M. Russ. J. Org. Chem. 2005, 41, 1445–1448; https://doi.org/10.1007/s11178-005-0363-z.Search in Google Scholar

30. Eddington, N. D., Cox, D. S., Roberts, R. R., Stables, J. P., Powell, C. B., Scott, K. R. Curr. Med. Chem. 2000, 7, 417–436; https://doi.org/10.2174/0929867003375092.Search in Google Scholar PubMed

31. Weinstock, I. A. Chem. Rev. 1998, 98, 113–170; https://doi.org/10.1021/cr9703414.Search in Google Scholar PubMed

32. Wu, G., Wang, J., Shen, J., Yang, T., Zhang, Q., Zhou, B., Deng, Z., Bin, F., Zhou, D., Zhang, F. J. Non-Cryst. Solids 2000, 275, 169–174; https://doi.org/10.1016/s0022-3093(00)00257-x.Search in Google Scholar

33. Hashimoto, M., Misono, M. Acta Crystallogr. 1994, C50, 231–233.10.1107/S0907444993009552Search in Google Scholar PubMed

34. Parry, E. P. J. Catal. 1963, 2, 371–379; https://doi.org/10.1016/0021-9517(63)90102-7.Search in Google Scholar

Received: 2023-06-12
Accepted: 2023-11-25
Published Online: 2023-12-18
Published in Print: 2024-02-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/znb-2023-0045/html
Scroll to top button