Skip to main content
Log in

Finite Element Analysis of Mechanical Behavior for SiC Nanowires Reinforced Al Matrix Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

This paper proposes a finite element (FE) analysis approach in meso-scale to predict the mechanical behavior, including elastic moduli and tensile strength, of SiC nanowires reinforced aluminum matrix (SiCnw/Al) composites. The study investigates the influence of the volume fraction and the aspect ratio of the SiC nanowires on the mechanical properties of the composites by employing the representative volume elements (RVE) models. The FE results successfully predict the elastic moduli and strength properties of the SiCnw/Al composites, exhibiting consistency with both the experimental findings and the theoretical predictions. In terms of microstructure, the elastic moduli and strength of the composites generally exhibit an increasing trend with higher volume fractions. However, the aspect ratio demonstrates a more intricate behavior, initially increasing and eventually reaching a saturation value as the aspect ratio increases. The results also reveal significant effects of the extrusion treatment on the mechanical properties of the SiCnw/Al composites, leading to an increase in the elastic moduli and strength along the direction of the nanowires. The numerical approach presented in this work provides an accurate means of predicting the mechanical properties of SiCnw/Al composites, thereby serving as a valuable reference for designers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Bai-Xin Dong, Q., Li, Z.-F., Wang, T.-S., Liu, H.-Y., Yang, S.-L., Shu, L.-Y., Chen, F., Qiu, Q.-C., Jiang, Lai-Chang, Z.: Enhancing strength-ductility synergy and mechanisms of Al-based composites by size-tunable in-situ TiB2 particles with specific spatial distribution. Compos. Part B: Eng. 108912 (2021). https://doi.org/10.1016/j.compositesb.2021.108912

  2. Amiri Delouei, A., Emamian, A., Sajjadi, H., Atashafrooz, M., Li, Y., Wang, L.P., Jing, D., Xie, G.: A Comprehensive Review on Multi-Dimensional Heat Conduction of Multi-Layer and Composite Structures: Analytical Solutions. J. Therm. Sci. 1875–1907 (2021). https://doi.org/10.1007/s11630-021-1517-1

  3. Amin Emamian, A.A., Delouei, S., Karimnejad, Jing, D.: Analytical solution for temperature distribution in functionally graded cylindrical shells under convective cooling. Math. Method. Appl. Sci. 11442–11461 (2023). https://doi.org/10.1002/mma.7819

  4. Delouei, A.A., Emamian, A., Karimnejad, S., Li, Y.: An Exact Analytical Solution for Heat Conduction in a ‎Functionally Graded Conical Shell. J. Appl. Comput. Mechan. 302–317 (2023). https://doi.org/10.22055/jacm.2020.35641.2703

  5. Guo, B., Song, M., Zhang, X., Liu, Y., Cen, X., Chen, B., Li, W.: Exploiting the synergic strengthening effects of stacking faults in carbon nanotubes reinforced aluminum matrix composites for enhanced mechanical properties. Compos. Part B: Eng. 108646 (2021). https://doi.org/10.1016/j.compositesb.2021.108646

  6. Ronghua Dong, W., Yang, Z., Yu, P., Wu, M., Hussain, L., Jiang, Wu, G.: Aging behavior of 6061Al matrix composite reinforced with high content SiC nanowires. J. Alloy. Compd. 1037–1042 (2015). https://doi.org/10.1016/j.jallcom.2015.07.233

  7. Desheng Chu, Y., Ma, P., Li, H., Huang, Tang, P.: Microstructure and Damping Behavior of Continuous W-Core-SiC Fiber-Reinforced Aluminum Matrix Composites. Appl. Compos. Mater. 1631–1651. (2021). https://doi.org/10.1007/s10443-021-09920-z

  8. Kamyar Shirvanimoghaddam, S.U., Hamim, M.K., Akbari, S.M., Fakhrhoseini, H., Khayyam, A.H., Pakseresht, E., Ghasali, M., Zabet, K.S., Munir, S., Jia, J.P., Davim, Minoo Naebe: and. Carbon fiber reinforced metal matrix composites: Fabrication processes and properties. Compos. Part A: Appl. Sci. Manuf. 70–96 (2017). https://doi.org/10.1016/j.compositesa.2016.10.032

  9. Paulo Davim, J. (ed.): Metal Matrix Composites. DE Gruyter (2014)

  10. Paulo Davim, J., Charitidis, C.A. (eds.): s). Nanocomposites. DE Gruyter. (2013)

  11. D. MIRACLE. Metal matrix composites – From science to technological significance. Compos. Sci. Technol. 2526–2540 (2005). https://doi.org/10.1016/j.compscitech.2005.05.027

  12. Masoud Tahani, E., Postek, Sadowski, T.: Diffusion and Interdiffusion Study at Al- and O-Terminated Al2O3/AlSi12 Interface Using Molecular Dynamics Simulations. Materials 4324 (2023). https://doi.org/10.3390/ma16124324

  13. Wenshu Yang, G., Chen, J., Qiao, Q., Zhang, R., Dong, Wu, G.: Effect of Mg addition on the microstructure and mechanical properties of SiC nanowires reinforced 6061Al matrix composite. Mater. Sci. Eng. A Structural Mater. Properties Microstruct. Proc. 189–194 (2017). https://doi.org/10.1016/j.msea.2017.02.065

  14. Palanivel, R., Dinaharan, I., Laubscher, R.F., Paulo Davim, J.: Influence of boron nitride nanoparticles on microstructure and wear behavior of AA6082/TiB 2 hybrid aluminum composites synthesized by friction stir processing. Mater. Des. 2016, 195–204 (2016). https://doi.org/10.1016/j.matdes.2016.05.127

    Article  CAS  Google Scholar 

  15. Wenshu Yang, R., Dong, Z., Yu, P., Wu, M., Hussain, Wu, G.: Strengthening behavior in high content SiC nanowires reinforced Al composite. Mater. Sci. Eng. A 41–46 (2015). https://doi.org/10.1016/j.msea.2015.09.043

  16. Li, B., Wang, X., Mao, B., He, T., Huang, H., Yuan, X.: Bamboo like SiC Nanowires Grown in a Dual-Temperature Zone Reaction System Enhance the Oxidation and Thermal Shock Resistance of SiC Coatings. Appl. Compos. Mater. 2021, 1–15 (2021). https://doi.org/10.1007/s10443-020-09845-z

    Article  CAS  Google Scholar 

  17. Effect of Wear Tests on Silicon Carbide Nanowires: / Aluminium Metal Powder Composites

  18. Ling Xin, W., Yang, Q., Zhao, R., Dong, P., Wu, Z., Xiu, M., Hussain, Wu, G.: Strengthening behavior in SiC nanowires reinforced pure Al composite. J. Alloy. Compd. 2406–2412 (2017). https://doi.org/10.1016/j.jallcom.2016.11.134

  19. Ling Xin, W., Yang, Q., Zhao, R., Dong, X., Liang, Z., Xiu, M., Hussain, Wu, G.: Effect of extrusion treatment on the microstructure and mechanical behavior of SiC nanowires reinforced Al matrix composites. Mater. Sci. Eng. A 38–44 (2017). https://doi.org/10.1016/j.msea.2016.11.042

  20. Marta Pozuelo, Wei, H., Kao, Jenn-Ming, Y.: High-resolution TEM characterization of SiC nanowires as reinforcements in a nanocrystalline Mg-matrix. Mater. Charact. 81–88 (2013). https://doi.org/10.1016/j.matchar.2013.01.003

  21. Kim, J., Armero, F.: Three-dimensional finite elements with embedded strong discontinuities for the analysis of solids at failure in the finite deformation range. Comput. Method. Appl. M 2017, 890–926 (2017). https://doi.org/10.1016/j.cma.2016.12.038

    Article  Google Scholar 

  22. Cheng, Q., Guan, Z., Jiang, S., Li, Z.: A method of determining effective elastic properties of honeycomb cores based on equal strain energy. Chinese J. Aeronaut. 2017, 766–779 (2017). https://doi.org/10.1016/j.cja.2017.02.016

    Article  Google Scholar 

  23. Qingping Sun, Jain, M.K.: Computational Elastic Analysis of AA7075-O using 3D-Microstructrure-Based-RVE with Really-distributed Particles. Int. J. Mech. Sci. 107192.(2022). https://doi.org/10.1016/j.ijmecsci.2022.107192

  24. Dong Wang, J., Zhao, Y., Zhou, X., Chen, A., Li: and Zhaochao Gong. Extended finite element modeling of crack propagation in ceramic tool materials by considering the microstructural features. Comp. Mater. Sci. 236–244 (2013). https://doi.org/10.1016/j.commatsci.2013.04.045

  25. Jin Liu, Y., Fu, Y., Chen, J., Jiang, Y.L., Zhang, Y., Xu: and Shang Lin. A Novel Algorithm in Stochastic Chopped Carbon Fiber Composite Structure-A Study of RVE Size Effect and Homogenization Response of Directional Modulus. Appl. Compos. Mater. 565–595 (2022). https://doi.org/10.1007/s10443-021-09947-2

  26. Syed Zulfiqar Hussain Shah, Puteri Sri Melor Megat-Yusoff, Karuppanan, S., Choudhry, R.S., Ahmad, F.: and Zubair Sajid. Mechanical Properties and Failure Mechanisms of Novel Resin-infused Thermoplastic and Conventional Thermoset 3D Fabric Composites. Appl. Compos. Mater. 515–545 (2022). https://doi.org/10.1007/s10443-021-09980-1

  27. Lu, Z., Yuan, Z., Liu, Q.: 3D numerical simulation for the elastic properties of random fiber composites with a wide range of fiber aspect ratios. Comp. Mater. Sci. 2014, 123–129 (2014). https://doi.org/10.1016/j.commatsci.2014.04.007

    Article  Google Scholar 

  28. Hui Liu, D., Zeng, Y., Li, Jiang, L.: Development of RVE-embedded solid elements model for predicting effective elastic constants of discontinuous fiber reinforced composites. Mech. Mater. 109–123 (2016). https://doi.org/10.1016/j.mechmat.2015.10.011

  29. Pan, Y., Iorga, L., Pelegri, A.A.: Analysis of 3D random chopped fiber reinforced composites using FEM and random sequential adsorption. Comp. Mater. Sci. 2008, 450–461 (2008). https://doi.org/10.1016/j.commatsci.2007.12.016

    Article  CAS  Google Scholar 

  30. Xia, Z.H.O.U., Zi-fan, L.I.U., Feng, S.U., Ya-fu, F.A.N.: Magnesium composites with hybrid nano-reinforcements: 3D simulation of dynamic tensile response at elevated temperatures. T. Nonferr. Metal. Soc. 2021, 636–647 (2021). https://doi.org/10.1016/S1003-6326(21)65525-5

    Article  Google Scholar 

  31. Gao, X., Zhang, X., Qian, M., Geng, L.: Effect of reinforcement shape on fracture behaviour of SiC/Al composites with network architecture. Compos Struct 2019, 411–420 (2019). https://doi.org/10.1016/j.compstruct.2019.02.067

    Article  Google Scholar 

  32. Metallic materials-Tensile: testing-Part Method of test at room temperature. Beijing (2010)

  33. Ronghua Dong, W., Yang, P., Wu, M., Hussain, G., Wu, Jiang, L.: High content SiC nanowires reinforced Al composite with high strength and plasticity. Mater. Sci. Eng. A 8–12 (2015). https://doi.org/10.1016/j.msea.2015.02.013

  34. Abaqus theoretical manual. (2018)

  35. Yuguang Cao, Y., Zhen, M., Song, H., Yi, F., Li, Li, X.: Determination of Johnson–Cook parameters and evaluation of Charpy impact test performance for X80 pipeline steel. Int. J. Mech. Sci. 105627 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105627

  36. Wu, Y., Zhou, C., Wu, R., Sun, L., Lu, C., Xiao, Y., Su, Z., Gong, M., Ming, K., Liu, K., Gu, C., Yang, W., Wang, J., Gaohui Wu: and. Synergistic strengthening of Al–SiC composites by nano-spaced SiC-nanowires and the induced high-density stacking faults. Compos. Part B: Eng. 110458 (2023). https://doi.org/10.1016/j.compositesb.2022.110458

  37. Viot, P., Tarjus, G., Ricci, S.M., Talbot, J.: Random sequential adsorption of anisotropic particles. I: Jamming limit and asymptotic behavior. J Chem. Phys. 5212–5218 (1992). https://doi.org/10.1063/1.463820

  38. Guo, Z., Peng, X., Moran, B.: Large deformation response of a hyperelastic fibre reinforced composite: Theoretical model and numerical validation. Compos. Part A Appl. Sci. Manuf. 2007, 1842–1851 (2007). https://doi.org/10.1016/j.compositesa.2007.04.004

    Article  Google Scholar 

  39. Mirkhalaf, S.M., Andrade Pires, F.M., Simoes, R.: Determination of the size of the Representative Volume Element (RVE) for the simulation of heterogeneous polymers at finite strains. Finite Elem Anal Des 2016, 30–44 (2016). https://doi.org/10.1016/j.finel.2016.05.004

    Article  Google Scholar 

  40. Qi Zuo, C., Wang, X., Pei, L., Lin, Y., Li: and Weidi Sun. Analysis and prediction of tensile properties based on rule of mixtures model for multi-scale ramie plain woven fabric reinforced composite. Compos. Struct. 116785 (2023). https://doi.org/10.1016/j.compstruct.2023.116785

  41. Yasser Zare and Kyong Yop Rhee: Development of Hashin-Shtrikman model to determine the roles and properties of interphases in clay/CaCO3/PP ternary nanocomposite. Appl Clay Sci 2017, 176–182 (2017). https://doi.org/10.1016/j.clay.2016.12.033

    Article  CAS  Google Scholar 

  42. Halpin Affdl, J.C., Kardos, J.L.: The Halpin-Tsai equations: A review. Polym Eng Sci 1976, 344–352 (1976). https://doi.org/10.1002/pen.760160512

    Article  Google Scholar 

  43. Fedotov, A.F.: Mori-Tanaka experimental-analytical model for predicting engineering elastic moduli of composite materials. Compos. Part B: Eng. 109635 (2022). https://doi.org/10.1016/j.compositesb.2022.109635

  44. Shin, S.E., Choi, H.J., Shin, J.H., Bae, D.H.: Strengthening behavior of few-layered graphene/aluminum composites. Carbon 2015, 143–151 (2015). https://doi.org/10.1016/j.carbon.2014.10.044

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 12372068, 11872162), which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zaoyang Guo or Wenshu Yang.

Ethics declarations

Conflict of Interest

The authors declared that they have no conflicts of interest in this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, R., Xin, L., Huang, Z. et al. Finite Element Analysis of Mechanical Behavior for SiC Nanowires Reinforced Al Matrix Composites. Appl Compos Mater 31, 611–644 (2024). https://doi.org/10.1007/s10443-023-10188-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-023-10188-8

Keywords

Navigation