Skip to main content
Log in

Two-photon spectroscopy of helium \(2^3S_1\)\(8^3D_{1,2,3}\) transitions at 544 nm with a 1.2 W compact laser system

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We have demonstrated two-photon spectroscopy in a power-enhanced cavity of helium \(2^{3}S_{1}\)\(8^{3}D_{1,2,3}\) transitions in a radio frequency (RF)-discharged vapor cell with a compact laser system at 544 nm. An external-cavity diode laser at 1088 nm was constructed to seed a Ytterbium-doped fiber amplifier. By employing a MgO:PPLN crystal, we have successfully doubled the laser frequency of the fiber amplifier output, generating laser power exceeding 1.2 W at 544 nm. The normalized doubling efficiency was measured to be \(0.78 \%/cm\cdot {}W\). The optical power within the power-enhanced cavity was 11.8 W. Notably, the \(2^3S_1\)\(8^3D_{1,2,3}\)transitions were observed for the first time. Subsequently, we have investigated the pressure shift and AC stark effect of the spectra. These results pave the way for precision measurement of the transition frequencies and will provide stringent test for QED atomic calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. D.C. Morton, Q. Wu, G.W.F. Drake, Can. J. Phys. 84(2), 83–105 (2006). https://doi.org/10.1139/p06-009

    Article  ADS  Google Scholar 

  2. G.W.F. Drake, Z.-C. Yan, Can. J. Phys. 86(1), 45–54 (2008). https://doi.org/10.1139/p07-154

    Article  ADS  Google Scholar 

  3. K. Pachucki, V. Patkóš, V.A. Yerokhin, Phys. Rev. A 95(6), 062510 (2017). https://doi.org/10.1103/PhysRevA.95.062510

    Article  ADS  Google Scholar 

  4. P.-P. Zhang, Z.-X. Zhong, Z.-C. Yan, T.-Y. Shi, Chin. Phys. B 24(3), 033101 (2015). https://doi.org/10.1088/1674-1056/24/3/033101

    Article  ADS  Google Scholar 

  5. V.A. Yerokhin, K. Pachucki, Phys. Rev. A 81(2), 022507 (2010). https://doi.org/10.1103/PhysRevA.81.022507

    Article  ADS  Google Scholar 

  6. C. Dorrer, F. Nez, B. de Beauvoir, L. Julien, F. Biraben, Phys. Rev. Lett. 78, 3658–3661 (1997). https://doi.org/10.1103/PhysRevLett.78.3658

    Article  ADS  Google Scholar 

  7. P.C. Pastor, L. Consolino, G. Giusfredi, P. De Natale, M. Inguscio, V.A. Yerokhin, K. Pachucki, Phys. Rev. Lett. 108(14), 143001 (2012). https://doi.org/10.1103/PhysRevLett.108.143001

    Article  ADS  Google Scholar 

  8. W. Hogervorst, K.S.E. Eikema, W. Ubachs, and W. Vassen. In Laser Spectroscopy-Proceedings Of The Xii International Conference, pages 92. World Scientific, (1996). https://books.google.com.tw/books?hl=zh–TW &lr= &id=Cec7DwAAQBAJ &oi=fnd &pg=PA92 &dq=Laser+Centre+Vrije+Universiteit,+Faculty+of+Physics+and+Astronomy &ots=v7kM_vuYTo &sig=GS7_SMHcR6gMnXAb5BsUnm2WhkI &redir_esc=y#v=onepage &q=Laser%20Centre%20Vrije%20Universiteit%2C%20Faculty%20of%20Physics%20and%20Astronomy &f=false

  9. P. Mueller, L.-B. Wang, G.W.F. Drake, K. Bailey, Z.-T. Lu, T.P. O’Connor, Phys. Rev. Lett. 94(13), 133001 (2005)

    Article  ADS  Google Scholar 

  10. P.C. Pastor, G. Giusfredi, P. De Natale, G. Hagel, C. De Mauro, M. Inguscio, Phys. Rev. Lett. 92(2), 023001 (2004). https://doi.org/10.1103/PhysRevLett.92.023001

    Article  ADS  Google Scholar 

  11. N. Ohtsubo, T. Aoki, and Y. Torii. Opt. Lett, 37(14): 2865–2867, 2012. https://opg.optica.org/ol/fulltext.cfm?uri=ol–37–14–2865 &id=239672

  12. T. Wu, X. Peng, W. Gong, Y. Zhan, Z. Lin, B. Luo, H. Guo, Opt. Lett. 38(6), 986–988 (2013)

    Article  ADS  Google Scholar 

  13. J.E. Lawler, A.I. Ferguson, J.E.M. Goldsmith, D.J. Jackson, A.L. Schawlow, Phys. Rev. Lett. 42(16), 1046 (1979). https://doi.org/10.1103/PhysRevLett.42.1046

    Article  ADS  Google Scholar 

  14. G. Chevalier, J.-M. Gagné, P. Pianarosa, J. Opt. Soc. Am. 5(7), 1492–1499 (1988)

    Article  ADS  Google Scholar 

  15. C.J. Sansonetti, W.C. Martin, Phys. Rev. A 29(1), 159 (1984). https://doi.org/10.1103/PhysRevA.29.159

    Article  ADS  Google Scholar 

  16. B.A. Bushaw, W. Nörtershäuser, G.W.F. Drake, H.-J. Kluge, Phys. Rev. A 75(5), 052503 (2007). https://doi.org/10.1103/PhysRevA.75.052503

    Article  ADS  Google Scholar 

  17. M. Smiciklas, D. Shiner, Phys. Rev. Lett. 105(12), 123001 (2010). https://doi.org/10.1103/PhysRevLett.105.123001

    Article  ADS  Google Scholar 

  18. D. Shiner, R. Dixson, V. Vedantham, Phys. Rev. Lett. 74(18), 3553 (1995). https://doi.org/10.1103/PhysRevLett.74.3553

    Article  ADS  Google Scholar 

  19. Y.-J. Huang, Y.-C. Guan, Y.-C. Huang, T.-H. Suen, J.-L. Peng, L.-B. Wang, J.-T. Shy, Phys. Rev. A 97(3), 032516 (2018). https://doi.org/10.1103/PhysRevA.97.032516

    Article  ADS  Google Scholar 

  20. Y.-J. Huang, Y.-C. Guan, J.-L. Peng, J.-T. Shy, L.-B. Wang, Phys. Rev. A 101(6), 062507 (2020). https://doi.org/10.1103/PhysRevA.101.062507

    Article  ADS  Google Scholar 

  21. J.-L. Peng, H. Ahn, R.-H. Shu, H.-C. Chui, J.W. Nicholson, Appl. Phys. B 86(1), 49–53 (2007). https://doi.org/10.1007/s00340-006-2476-7

    Article  ADS  Google Scholar 

  22. C.E. Theodosiou, Phys. Rev. A 30(6), 2910 (1984). https://doi.org/10.1103/PhysRevA.30.2910

    Article  ADS  Google Scholar 

  23. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Appl. Phys. B 31, 97–105 (1983). https://doi.org/10.1007/bf00702605

    Article  ADS  Google Scholar 

  24. A. Marsman, M. Horbatsch, and E.A. Hessels. J. Phys. Chem. Ref. Data, 44(3), 2015. https://pubs.aip.org/aip/jpr/article/44/3/031207/242367

  25. T. Udem, L. Maisenbacher, A. Matveev, V. Andreev, A. Grinin, A. Beyer, N. Kolachevsky, R. Pohl, D.C. Yost, T.W. Hänsch, Ann. Phys. 531(5), 1900044 (2019). https://doi.org/10.1002/andp.201900044

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This project is supported by the Ministry of Education of Taiwan.

Funding

This study was funded by the National Science and Technology Council (contract MOST 107-2112-M-007-007-MY3).

Author information

Authors and Affiliations

Authors

Contributions

L.W proposed the experiment and M.W performed the measurement and wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Li-Bang Wang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest associated with this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, MH., Wang, LB. Two-photon spectroscopy of helium \(2^3S_1\)\(8^3D_{1,2,3}\) transitions at 544 nm with a 1.2 W compact laser system. Appl. Phys. B 130, 12 (2024). https://doi.org/10.1007/s00340-023-08147-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08147-z

Navigation