Skip to main content
Log in

Impact of Zeeman sub-level pumping on saturated absorption spectra of thermal atomic vapor

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We propose ab-initio reduced rate equation models (with maximum 7 levels) to calculate the saturated absorption spectra (SAS) of thermal atomic vapor for linearly polarized pump and probe beams. We also experimentally validate our simplified models, that consume \(\sim 100\times\) lower computational resources than full multi-level models, for all four hyperfine dips of the Rb D\(_2\) line with residual error \(\lesssim 3\%\) and no fitting parameters with various pump-probe intensities and beam diameters. Our 5-level model, which considers hyperfine pumping but ignores Zeeman pumping, accurately predicts enhanced saturated probe transmission at all the resonances and crossovers. However, this model is unable to predict reduced probe transmission induced by the Zeeman (\(m_\textrm{F}\)) sub-level pumping at the crossover \(X_{10}\), comprising hyperfine transitions \(F_\textrm{g}=1\rightarrow F_\textrm{e}=0\) and \(F_\textrm{e}=1\) of \(^{87}\)Rb. In this case, our 7-level model, which accounts for both hyperfine and Zeeman pumping, faithfully reproduces all the SAS features corresponding to the hyperfine transitions \(F_\textrm{g}=1\rightarrow F_\textrm{e}=0,1,2\) of \(^{87}\)Rb. In addition, both our models account for the transit-relaxation (depending on beam diameter) of atoms traversing the laser beam for an accurate computation. Finally, we also present theoretical and experimental evidence demonstrating the significance of probe-induced hyperfine pumping even at intensities \(\sim 10\times\) smaller than that required for two-level saturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. W. Demtröder, Laser Spectroscopy: Vol. 2: Experimental Techniques, vol. 2 (Springer Science & Business Media, 2008)

    Google Scholar 

  2. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer Science & Business Media, 2013)

    Google Scholar 

  3. K. Thyagarajan, A. Ghatak, Lasers: Fundamentals and Applications (Springer Science & Business Media, 2010)

    Google Scholar 

  4. J.S. Torrance, B.M. Sparkes, L.D. Turner, R.E. Scholten, Opt. Express 24, 11396–11406 (2016)

    Article  ADS  Google Scholar 

  5. M.D. Eisaman, A. André, F. Massou, M. Fleischhauer, A.S. Zibrov, M.D. Lukin, Nature 438, 837–841 (2005)

    Article  ADS  Google Scholar 

  6. W.A. Furman. Electromagnetically induced transparency: the Zeeman Method Ph.D. thesis Reed College (2016)

  7. S. Nakayama, JOSA B 2, 1431–1437 (1985)

    Article  ADS  Google Scholar 

  8. O. Schmidt, K.M. Knaak, R. Wynands, D. Meschede, Appl. Phys. B 59, 167–178 (1994)

    Article  ADS  Google Scholar 

  9. L. Yi-min, C. Xu-zong, G. Jian-hua, J. Wang-xi, H. Jing-shan, Y. Dong-hai, W. Yi-qiu, Chin. Phys. Lett. 13, 424 (1996)

    Article  ADS  Google Scholar 

  10. G. Moon, H.R. Noh, JOSA B 25, 2101–2106 (2008)

    Article  ADS  Google Scholar 

  11. M. Himsworth, T. Freegarde, Phys. Rev. A 81, 023423 (2010)

    Article  ADS  Google Scholar 

  12. C. She, J. Yu, Appl. Opt. 34, 1063–1075 (1995)

    Article  ADS  Google Scholar 

  13. G. Quiroz-Sánchez, F. Ramirez-Martinez, L. Hoyos-Campo, J. Flores-Mijangos, J. Jimenez-Mier, Opt. Commun. 508, 127727 (2022)

    Article  Google Scholar 

  14. G. Moon, H.R. Noh, J. Korean Phys. Soc. 50, 1037–1043 (2007)

    Article  ADS  Google Scholar 

  15. L. Maguire, R. Van Bijnen, E. Mese, R. Scholten, J. Phys. B At. Mol. Opt. Phys. 39, 2709 (2006)

    Article  ADS  Google Scholar 

  16. V. Marshall et al.. Experimental studies of the D2 line of 87 Rb vapour at 1.5 Tesla Ph.D. thesis Durham University (2017)

  17. G. Moon, H.R. Noh, JOSA B 25, 701–711 (2008)

    Article  ADS  Google Scholar 

  18. T. Lindvall, I. Tittonen, J. Mod. Opt. 54, 2779–2793 (2007)

    Article  ADS  Google Scholar 

  19. P. Siddons, C.S. Adams, C. Ge, I.G. Hughes, J. Phys. B At. Mol. Opt. Phys. 41, 155004 (2008)

    Article  ADS  Google Scholar 

  20. M. Harris, C. Adams, S. Cornish, I. McLeod, E. Tarleton, I. Hughes, Phys. Rev. A 73, 062509 (2006)

    Article  ADS  Google Scholar 

  21. R. Bala, J. Ghosh, V. Venkataraman, J. Phys. B At. Mol. Opt. Phys. 55, 165003 (2022)

    Article  ADS  Google Scholar 

  22. D.A. Steck, Rubidium 87 D Line Data, available online at http://steck.us/alkalidata (revision 2.2.2). Accessed 9 July 2021

  23. J. Sagle, R. Namiotka, J. Huennekens, J. Phys. B At. Mol. Opt. Phys. 29, 2629 (1996)

    Article  ADS  Google Scholar 

  24. Nesmeyanov, A. Nikolaevich, Vapor Pressure of the Chemical Elements (Elsevier Publishing Company, 1963)

    Google Scholar 

  25. D.A. Steck, Quantum and atom optics. http://steck.us/teaching (revision0.13.10), (2007). Accessed 22 Sept 2021

  26. C.E. Tanner, Precision measurements of atomic lifetimes. AIP Conf. Proc. 323(American Institute of Physics), 130–145 (1994)

    Article  ADS  Google Scholar 

  27. D.A. Steck, Rubidium 85 D Line Data, available online at http://steck.us/alkalidata (revision 2.2.3). Accessed 9 July 2021

  28. P. Pappas, M. Burns, D. Hinshelwood, M. Feld, D. Murnick, Phys. Rev. A 21, 1955 (1980)

    Article  ADS  Google Scholar 

  29. J. Haverkort, H. Werij, J. Woerdman, Phys. Rev. A 38, 4054 (1988)

    Article  ADS  Google Scholar 

  30. C.J. Foot et al., Atomic Physics, vol. 7 (Oxford University Press, 2005)

    Google Scholar 

  31. D.R. Lide, CRC Handbook of Chemistry and Physics, vol. 85 (CRC Press, 2004)

    Google Scholar 

  32. S.R. Shin, H.R. Noh, J. Phys. Soc. Jpn. 78, 084302–084302 (2009)

    Article  ADS  Google Scholar 

  33. S.R. Shin, H.R. Noh, Opt. Commun. 284, 1243–1246 (2011)

    Article  ADS  Google Scholar 

  34. T. Lindvall, I. Tittonen, Phys. Rev. A 80, 032505 (2009)

    Article  ADS  Google Scholar 

  35. D.A. Smith, I.G. Hughes, Am. J. Phys. 72, 631–637 (2004)

    Article  ADS  Google Scholar 

  36. Yq. Li, M. Xiao, Phys. Rev. A 51, R2703 (1995)

    Article  ADS  Google Scholar 

  37. A. Lezama, S. Barreiro, A. Akulshin, Phys. Rev. A 59, 4732 (1999)

    Article  ADS  Google Scholar 

  38. G. Wasik, W. Gawlik, J. Zachorowski, W. Zawadzki, Appl. Phys. B 75, 613–619 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Ingo Nosske and Omshankar for their assistance in the early phases of this project. The authors would also like to acknowledge the financial support for this work from the Council of Scientific & Industrial Research (CSIR) under Grant No. 09/086(1341)/2018-EMR-I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajni Bala.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bala, R., Ghosh, J. & Venkataraman, V. Impact of Zeeman sub-level pumping on saturated absorption spectra of thermal atomic vapor. Appl. Phys. B 130, 13 (2024). https://doi.org/10.1007/s00340-023-08148-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08148-y

Navigation