Skip to main content
Log in

Thermal expansion of monoclinic KYbxY1–x(WO4)2 laser crystals

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Potassium–yttrium tungstate single crystals KYbxY1–x(WO4)2 of high structural quality are grown by the modified Czochralski method. The crystals were grown using so-called dynamic growth regime, and optimal temperature gradients at the crystallization front were determined. The thermal expansion coefficients of KYbxY1–x(WO4)2 in the directions of the optical indicatrix axes Np, Nm and Ng are determined using the dilatometric technique. The dependence of thermal expansion coefficients on the temperature in the range of 330–573 K and ytterbium content x from 0 to 1.0 is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. F. Brunner, G.J. Spühler, J. Aus der Au, L. Krainer, F. Morier-Genoud, R. Paschotta, N. Lichtenstein, S. Weiss, C. Harder, A.A. Lagatsky, A. Abdolvand, N.V. Kuleshov, U. Keller, Diode-pumped femtosecond Yb:KGd(WO4)2 laser with 1.1-W average power. Opt. Lett. 25, 1119–1121 (2000)

    Article  ADS  Google Scholar 

  2. A.A. Lagatsky, C.T.A. Brown, W. Sibbett, Highly efficient and low threshold diode-pumped Kerr-lens mode-locked Yb:KYW laser. Opt. Express 12(17), 3928–3933 (2004)

    Article  ADS  Google Scholar 

  3. A.A. Kovalyov, V.V. Preobrazhenskii, M.A. Putyato, N.N. Rubtsova, B.R. Semyagin, V.E. Kisel, A.S. Rudenkov, N.V. Kuleshov, A.A. Pavlyuk, Efficient high-power femtosecond Yb3+:KY(WO4)2 laser. Laser Phys. Lett. 12, 75801–75805 (2015)

    Article  Google Scholar 

  4. J. Liu et al., Femtosecond mode-locked Yb:KYW laser based on InP nanowire saturable absorber. IEEE Photonics Technol. Lett. 34(5), 247–250 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  5. X. Mateos, R. Solé, J. Gavaldá, M. Aguiló, J. Massons, F. Dıaz, Crystal growth, optical and spectroscopic characterisation of monoclinic KY(WO4)2 co-doped with Er3+ and Yb3+. Opt. Mater. 28, 423–431 (2006)

    Article  ADS  Google Scholar 

  6. M.C. Pujol, M.A. Bursukova, F. Güell, X. Mateos, V. Petrov, R.M. Solé, J. Gavaldà, M. Aguilo, J. Massons, F. Díaz, P. Klopp, U. Griebner, Growth, optical characterization, and laser operation of stoichiometric crystal KYb(WO4)2. Phys. Rev. B 65(16), 165121 (2002)

    Article  ADS  Google Scholar 

  7. R.L. Aggarwal, D.J. Ripin, J.R. Ochoa, T.Y. Fan, Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range. J. Appl. Phys. 98, 103514 (2005)

    Article  ADS  Google Scholar 

  8. S. Chenais, F. Druon, S. Forget, F. Balembois, P. Georges, On thermal effects in solid-state lasers: the case of ytterbium-doped materials. Prog. Quant. Electron. 30(4), 89–153 (2006)

    Article  ADS  Google Scholar 

  9. A.A. Lagatsky, N.V. Kuleshov, V.P. Mikhailov, Diode-pumped CW lasing of Yb:KYW and Yb:KGW. Opt. Commun. 165, 71–75 (1999)

    Article  ADS  Google Scholar 

  10. V.E. Kisel, A.E. Troshin, V.G. Shcherbitsky, N.V. Kuleshov, A.A. Pavlyuk, F. Brunner, R. Paschotta, F. Morier-Genoud, U. Keller, Luminescent and lasing characteristics of heavily doped Yb:KY(WO4)2 crystals. Quant. Electron. 36(4), 316–319 (2006)

    Article  ADS  Google Scholar 

  11. J. Pouysegur et al., Generation of 150-fs pulses from a diode-pumped Yb:KYW nonlinear regenerative amplifier. Opt. Express 22(8), 9414–9419 (2014)

    Article  ADS  Google Scholar 

  12. F.M. Bain, A.A. Lagatsky, S.V. Kurilchick, V.E. Kisel, S.A. Guretsky, A.M. Luginets, N.A. Kalanda, I.M. Kolesova, N.V. Kuleshov, W. Sibbett, C.T.A. Brown, Continuous-wave and Q-switched operation of a compact, diode-pumped Yb3+:KY(WO4)2 planar waveguide laser. Opt. Express 17(3), 1666–1670 (2009)

    Article  ADS  Google Scholar 

  13. Ò. Silvestre, J. Grau, M. Cinta Pujol, J. Massons, M. Aguiló, F. Díaz, M.T. Borowiec, A. Szewczyk, M.U. Gutowska, M. Massot, A. Salazar, V. Petrov, Thermal properties of monoclinic KLu(WO4)2 as a promising solid state laser host. Opt. Express 16(7), 5022–5034 (2008)

    Article  ADS  Google Scholar 

  14. F. Brunner, T. Sdmeyer, E. Innerhofer, F. Morier-Genoud, R. Paschotta, V. Kisel, V. Shcherbitsky, N. Kuleshov, J. Gao, K. Contag, A. Giesen, U. Keller, 240-fs pulses with 22-W average power from a mode-locked thin-disk Yb:KY(WO4)2 laser. Opt. Lett. 27, 1162–1164 (2002)

    Article  ADS  Google Scholar 

  15. J.J. Carvajal, B. Raghothamachar, O. Silvestre, H. Chen, M.C. Pujol, V. Petrov, M. Dudley, M. Aguiló, F. Dıaz, Effect of structural stress on the laser quality of highly doped Yb:KY(WO4)2/KY(WO4)2 and Yb:KLu(WO4)2/KLu(WO4)2 epitaxial structures. Cryst. Growth Des. 9(2), 653–656 (2009)

    Article  Google Scholar 

  16. W. Koechner, Solid-State Laser Engineering, 3rd edn. (Springer, New York, 1992), pp.388–392

    Book  Google Scholar 

  17. C.E. Greninger, S.E. Rodriguez, Thermal stress, optical distortion, and birefringence in a heated cylindrical trigonal crystal rod. J. Appl. Phys. 87(12), 8545–8548 (2000)

    Article  ADS  Google Scholar 

  18. S. Vatnik, M.C. Pujol, J.J. Carvajal, X. Mateos, M. Aguiló, F. Díaz, V. Petrov, Thermo–optic coefficients of monoclinic KLu(WO4)2. Appl. Phys. B 95(4), 653–656 (2009)

    Article  ADS  Google Scholar 

  19. P.A. Loiko, V.V. Filippov, K.V. Yumashev, N.V. Kuleshov, A.A. Pavlyuk, Thermo-optic coefficients study in KGd(WO4)2 and KY(WO4)2 by a modified minimum deviation method. Appl. Opt. 51(15), 2951–2957 (2012)

    Article  ADS  Google Scholar 

  20. G. Ghosh, Handbook of Thermo-optic Coefficients of Optical Materials with Applications (Academic Press, London, 1998)

    Google Scholar 

  21. K. Yumashev, P. Loiko, Thermal stress and end-bulging in monoclinic crystals: the case study of double tungstates. Appl. Opt. 56(13), 3857–3866 (2017)

    Article  ADS  Google Scholar 

  22. C.E. Greninger, S.E. Rodriguez, Thermal stress in a trigonal crystal rod. J. Appl. Phys. 85(6), 3159–3167 (1999)

    Article  ADS  Google Scholar 

  23. Z.H.O.U. Mu, W.A.N.G. Xiao-feng, T.A.N. Ji-chun, Calculation and analysis of athermal directions of Yb∶KGW laser crystal. J. Appl. Opt. 29(1), 81–85 (2008)

    Google Scholar 

  24. V.V. Filippov, Athermal directions in KGd(WO4)2 and KLu(WO4)2 crystals under uniform heating. Appl. Opt. 52(18), 4377–4384 (2013)

    Article  ADS  Google Scholar 

  25. O.P. Dernovich, N.V. Gusakova, V.E. Kisel, A.V. Kravtsov, I.M. Kolesova, S.A. Guretsky, A.A. Pavlyuk, N.V. Kuleshov, In-band pumped continuous-wave lasers based on Ho:KY(WO4)2 crystal and Ho:KGdYbY(WO4)2 epitaxial layer. Devices Methods Meas. 11(4), 264–271 (2020)

    Google Scholar 

  26. S. Guretsky, D. Karpinsky, I. Kolesova, A. Kravtsov, D. Zhaludkevich, S. Ozcelik, O. Dernovich, N. Kuleshov, Growth and spectral characteristics of single crystal layer of KY(WO4)2 doped with Ho3+ ions. Nanomater. Sci. Eng. 2(1), 49–52 (2020)

    Google Scholar 

  27. A.A. Kaminskii, A.F. Konstantinova, V.P. Orekhova, A.V. Butashin, R.F. Kletsova, A.A. Pavlyuk, Optical and nonlinear laser properties of the c (3)-active monoclinic a-KY(WO4)2 crystals. Crystallogr. Rep. 46(4), 733–741 (2001)

    Article  Google Scholar 

  28. M.C. Pujol, X. Mateos, R. Solé, J. Massons, J. Gavaldà, F. Díaz, M. Aguilo, Linear thermal expansion tensor in KRE(WO4)2 (RE = Gd, Y, Er, Yb) monoclinic crystals. Mater. Sci. Forum 378–381, 710–715 (2001)

    Article  Google Scholar 

  29. J.F. Nye, Physical Properties of Crystals (Clarendon Press, Oxford, 1964)

    Google Scholar 

  30. R. Beach, G. Albrecht, R. Solan, W. Krupke, B. Comasky, S. Mitchell, C. Brandle, G. Berkstresser, A ground-state depleted laser in neodynium doped yttrium orthosilicate. Proc. SPIESPIE 1223, 160–180 (1990)

    Article  ADS  Google Scholar 

  31. N. Al Nasiri, N. Patra, D. Horlait, D.D. Jayaseelan, W.E. Lee, Thermal properties of rare-Earth monosilicates for EBC on Si-based ceramic composites. J. Am. Ceram. Soc. 99(2), 589–596 (2016)

    Article  Google Scholar 

  32. T. Utsu, S. Akiyama, Growth and applications of Gd2SiO5Ce scintillators. J. Cryst. Growth. 109, 385–391 (1991)

    Article  ADS  Google Scholar 

  33. A. Authier (ed.), International Tables for Crystallography, Volume D: Physical Properties of Crystals (The International Union of Crystallography, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003)

    Google Scholar 

  34. P.A. Loiko, K.V. Yumashev, N.V. Kuleshov, A.A. Pavlyuk, Thermo-optical properties of pure and Yb-doped monoclinic KY(WO4)2 crystals. Appl. Phys. B 106, 663–668 (2012)

    Article  ADS  Google Scholar 

  35. X. Peng, A. Asundi, Y. Chen, Z. Xiong, Study of the mechanical properties of Nd:YVO4 crystal by use of laser interferometry and finite-element analysis. Appl. Opt. 40, 1396–1403 (2001)

    Article  ADS  Google Scholar 

  36. Y.F. Chen, Design criteria for concentration optimization in scaling diode end-pumped lasers to high powers: influence of thermal fracture. IEEE J. Quantum Electron. 35, 234–239 (1999)

    Article  ADS  Google Scholar 

  37. K. Yumashev, P. Loiko, Thermal lensing in diode-pumped [001]-cut tetragonal crystals. Opt. Commun. 355, 543–550 (2015)

    Article  ADS  Google Scholar 

  38. Y.I. Sirotin, Temperature stresses, emergent during heating and cooling of single crystals. Crystallogr. Rep. 1, 708–717 (1956)

    Google Scholar 

Download references

Acknowledgements

This work is partly supported by the State Research Program of the Ministry of Education of the Republic of Belarus (Grant 8.1.7).

Funding

Ministry of Education of the Republic of Belarus, Grant 8.1.7.

Author information

Authors and Affiliations

Authors

Contributions

KVY wrote the main text of the manuscript. SAG, DVK and KLT synthesized the crystal, prepared part 2. Experiment, tables and drawings for it. EET determined the thermal expansion coefficients KYbxY1–x(WO4)2 in the directions of the optical indicatrix axes Np, Nm and Ng using the dilatometric method. KVY, AMM and AVH prepared the tables and figures for part 3. Results and discussion.

Corresponding author

Correspondence to K. V. Yumashev.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yumashev, K.V., Trusova, E.E., Guretskii, S.A. et al. Thermal expansion of monoclinic KYbxY1–x(WO4)2 laser crystals. Appl. Phys. B 130, 14 (2024). https://doi.org/10.1007/s00340-023-08150-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08150-4

Navigation