Skip to main content
Log in

Spatial Computer Model of the UCl3–NaCl–MgCl2–PuCl3 Isobaric Phase Diagram

  • PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A four-dimensional (4D, in concentration–temperature coordinates) computer model of the isobaric phase diagram of uranium, sodium, magnesium, and plutonium chlorides, as well as four three-dimensional (3D) computer models of the phase diagrams of the ternary systems forming it, has been constructed. The technology of assembling a 4D model of 46 hypersurfaces and 17 phase regions was used in the design. The obtained 4D model of the UCl3–NaCl–MgCl2–PuCl3 phase diagram makes it possible to visualize a four-dimensional object as a whole (with all its hypersurfaces and phase regions) by any arbitrarily given 2D and 3D sections, as well as it is able to reproduce published (experimental or thermodynamically calculated) 2D sections. The scope of application of the results of the work is the development of materials for fuel components of fourth-generation molten salt reactors and pyrochemical recycling of spent fuel rods. For the first time, a comprehensive, complete description of phase diagrams composed of uranium, plutonium, sodium, and magnesium chlorides has been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Notes

  1. Hereinafter, an invariant reaction in which two reagents participate (one of them is a melt) and at the output two reaction products are formed, which is called “quasi-peritectic” in the classical literature [25], is denoted by the letter Q [22].

REFERENCES

  1. H. Yin, S. Wu, X. Wang, et al., J. Fluorine Chem. 217, 90 (2019). https://doi.org/10.1016/j.jfluchem.2018.09.008

    Article  CAS  Google Scholar 

  2. P. P. Fedorov, Russ. J. Inorg. Chem. 66, 245 (2021). https://doi.org/10.1134/S0036023621020078

    Article  CAS  Google Scholar 

  3. A. Mourogov and P. M. Bokov, Energy Convers. Manage. 47, 2761 (2006). https://doi.org/10.1016/j.enconman.2006.02.013

    Article  CAS  Google Scholar 

  4. A. D. Pelton and P. Chartrand, Metall. Mater. Trans. A 32A, 1361 (2001). https://doi.org/10.1007/s11661-001-0227-2

    Article  Google Scholar 

  5. V. Trnovcova, L. S. Garashina, A. Skubla, et al., Solid State Ionics 157, 195 (2003). https://doi.org/10.1016/S0167-2738(02)00209-6

    Article  CAS  Google Scholar 

  6. P. P. Fedorov, I. I. Buchinskaya, O. S. Bondareva, et al., Russ. J. Inorg. Chem. 45, 949 (2000).

    Google Scholar 

  7. O. Beneš and R. J. M. Konings, J. Nucl. Mater. 375, 202 (2008). https://doi.org/10.1016/j.jnucmat.2008.01.007

    Article  CAS  Google Scholar 

  8. O. Beneš, Thermodynamics of Molten Salts for Nuclear Applications, PhD. Dissertation (Chech Rep., Prague, 2008).

  9. L. Bulavin, Yu. Plevachuk, V. Sklyarchuk, et al., J. Nucl. Mater. 433, 329 (2013). https://doi.org/10.1016/j.jnucmat.2012.08.045

    Article  CAS  Google Scholar 

  10. H. Yin, X. Wu, C. Ling, et al., CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 77, 102427 (2022). https://doi.org/10.1016/j.calphad.2022.102427

    Article  CAS  Google Scholar 

  11. H. Yin, J. Lin, B. Hu, et al., CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 70, 101783 (2020). https://doi.org/10.1016/j.calphad.2020.101783

    Article  CAS  Google Scholar 

  12. J. A. Yingling, J. Schorne-Pinto, M. Aziziha, et al., J. Chem. Thermodyn. 179, 106974 (2023). https://doi.org/10.1016/j.jct.2022.106974

    Article  CAS  Google Scholar 

  13. O. Beneš, J. P. M. van der Meer, and R. J. M. Konings, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 31, 209 (2007). https://doi.org/10.1016/j.calphad.2006.12.004

    Article  CAS  Google Scholar 

  14. O. Beneš and R. J. M. Konings, J. Nucl. Mater. 377, 449 (2008). https://doi.org/10.1016/j.jnucmat.2008.04.004

    Article  CAS  Google Scholar 

  15. O. Beneš and R. J. M. Konings, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 32, 121 (2008). https://doi.org/10.1016/j.calphad.2007.07.006

    Article  CAS  Google Scholar 

  16. J. P. M. van der Meer, R. J. M. Konings, and H. A. J. Oonk, J. Nucl. Mater. 357, 48 (2006). https://doi.org/10.1016/j.jnucmat.2006.05.042

    Article  CAS  Google Scholar 

  17. R. N. Savchuk, N. V. Faidyuk, A. A. Omel’chuk, et al., Russ. J. Inorg. Chem. 59, 600 (2014). https://doi.org/10.1134/S0036023614060175

    Article  CAS  Google Scholar 

  18. L. I. Ponomarev, M. B. Seregin, A. A. Mikhalichenko, et al., Atom. Energ. 112, 341 (2012).

    Article  Google Scholar 

  19. P. Masset, R. J. M. Konings, R. Malmbeck, et al., J. Nucl. Mater. 344, 173 (2005). https://doi.org/10.1016/j.jnucmat.2005.04.038

    Article  CAS  Google Scholar 

  20. T. Murakami, A. Rodrigues, M. Ougier, et al., J. Nucl. Mater. 466, 502 (2015). https://doi.org/10.1016/j.jnucmat.2015.08.045

    Article  CAS  Google Scholar 

  21. S. Ghosh, R. Ganesan, R. Sridharan, et al., Thermochim. Acta 653, 16 (2017). https://doi.org/10.1016/j.tca.2017.03.024

    Article  CAS  Google Scholar 

  22. V. P. Vorob’eva, A. E. Zelenaya, V. I. Lutsyk, et al., Russ. J. Inorg. Chem. (2023). https://doi.org/10.1134/S0036023623601174

  23. G. L. Fredrickson and T. -S. Yoo, J. Nucl. Mater. 528, 151883 (2020). https://doi.org/10.1016/j.jnucmat.2019.151883

    Article  CAS  Google Scholar 

  24. V. P. Vorob’eva, A. E. Zelenaya, V. I. Lutsyk, et al., J. Phase Equilib. Diffus. 42, 175 (2021). https://doi.org/10.1007/s11669-021-00863-3

    Article  CAS  Google Scholar 

  25. A. Prince, Alloy Phase Equilibria (Elsevier Publ. Comp, Amsterdam–London–New York, 1966).

    Book  Google Scholar 

  26. R. G. Connell, J. Phase Equilib. Diffus. 15, 6 (1994). https://doi.org/10.1007/s11669-021-00863-3

    Article  CAS  Google Scholar 

  27. V. I. Lutsyk and V. P. Vorob’eva, J. Therm. Anal. Calorim. 101, 25 (2010). https://doi.org/10.1007/s10973-010-0855-0

    Article  CAS  Google Scholar 

  28. H. L. Lukas, E. T. Henig, and G. Petzow, Z. Metallkd. 77, 360 (1986).

    Google Scholar 

Download references

Funding

This work was been performed in the framework of a program of fundamental research of the Institute of Physical Materials Science, Siberian Branch, Russian Academy of Sciences, project no. 0270-2021-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Vorob’eva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorob’eva, V.P., Zelenaya, A.E., Lutsyk, V.I. et al. Spatial Computer Model of the UCl3–NaCl–MgCl2–PuCl3 Isobaric Phase Diagram. Russ. J. Inorg. Chem. 68, 1622–1631 (2023). https://doi.org/10.1134/S0036023623602039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623602039

Keywords:

Navigation