Skip to main content
Log in

New Method for Synthesis of Substituted 1-Amidine-closo-decaborates [1-B10H9NH=C(R1)NHR2] (R1 = Me, iPr, Ph; R2 = nBu, Bn)

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The process of nucleophilic substitution of the phenyliodonium substituent in the [1-B10H9IPh] anion with primary amines in organic nitriles has been studied. It has been shown that the reaction proceeds with the formation of a mixture of products, namely, 1-monoalkylammonio-closo-decaborate and the corresponding amidine, which is formed when an amine molecule is added to the nitrile. The resulting products have been characterized by 1H, 11B, 13C NMR spectroscopies, IR absorption spectroscopy, and high-resolution ESI mass spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. A. M. Spokoyny, Pure Appl. Chem. 85, 903 (2013). https://doi.org/10.1351/PAC-CON-13-01-13

    Article  CAS  Google Scholar 

  2. R. F. Barth, J. A. Coderre, M. G. H. Vicente, et al., Clinical Cancer Res. 11, 3987 (2005). https://doi.org/10.1158/1078-0432.CCR-05-0035

    Article  CAS  Google Scholar 

  3. D. Olid, R. Núñez, C. Viñas, et al., Chem. Soc. Rev. 42, 3318 (2013). https://doi.org/10.1039/C2CS35441A

    Article  CAS  PubMed  Google Scholar 

  4. M. Y. Stogniy, S. A. Erokhina, I. B. Sivaev, et al., Phosphorus Sulfur Silicon Relat. Elem. 194, 983 (2019). https://doi.org/10.1080/10426507.2019.1631312

    Article  CAS  Google Scholar 

  5. C. V. T. Hey-Hawkins, Boron-Based Compounds: Potential and Emerging Applications in Medicine (John Wiley & Sons Ltd, 2018).

    Book  Google Scholar 

  6. V. Geis, K. Guttsche, C. Knapp, et al., Dalton Trans. 15, 2687 (2009). https://doi.org/10.1039/b821030f

    Article  CAS  Google Scholar 

  7. E. Yu. Matveev, V. V. Avdeeva, K. Yu. Zhizhin, et al., Inorganics 10, 238 (2022). https://doi.org/10.3390/inorganics10120238

    Article  CAS  Google Scholar 

  8. V. V. Avdeeva, E. A. Malinina, and N. T. Kuznetsov, Coord. Chem. Rev. 469, 214636 (2022). https://doi.org/10.1016/j.ccr.2022.214636

    Article  CAS  Google Scholar 

  9. M. H. Rao and K. Muralidharan, Polyhedron 115, 105 (2016). https://doi.org/10.1016/j.poly.2016.03.062

    Article  CAS  Google Scholar 

  10. J. Derdziuk, P. J. Malinowski, and T. Jaron, Int. J. Hydrogen. Energy 44, 27030 (2019). https://doi.org/10.1016/j.ijhydene.2019.08.158

    Article  CAS  Google Scholar 

  11. D. S. Novopashina, M. A. Vorobyeva, and A. Venyami-nova, Front. Chem. 9, 1 (2021). https://doi.org/10.3389/fchem.2021.619052

    Article  CAS  Google Scholar 

  12. R. Varkhedkar, F. Yang, R. Dontha, et al., ACS Cent. Sci. 8, 322 (2022). https://doi.org/10.1021/acscentsci.1c01132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. H. Michiue, Y. Sakurai, N. Kondo, et al., Biomaterials 35, 3396 (2014). https://doi.org/10.1016/j.biomaterials.2013.12.055

    Article  CAS  PubMed  Google Scholar 

  14. A. V. Nelyubin, N. A. Selivanov, I. N. Klyukin, et al., Russ. J. Inorg. Chem. 66, 1390 (2021). https://doi.org/10.1134/S0036023621090096

    Article  CAS  Google Scholar 

  15. H. Koganei, S. Tachikawa, M. E. El-Zaria, et al., New J. Chem. 39, 6388 (2015). https://doi.org/10.1039/C5NJ00856E

    Article  CAS  Google Scholar 

  16. Y. Zhang, Y. Sun, T. Wang, et al., Molecules 23, 3137 (2018). https://doi.org/10.3390/molecules23123137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. I. B. Sivaev, A. V. Prikaznov, and D. Naoufal, Collect. Czech. Chem. Commun. 75, 1149 (2010). https://doi.org/10.1135/cccc2010054

    Article  CAS  Google Scholar 

  18. I. B. Sivaev, N. A. Votinova, V. I. Bragin, et al., J. Organomet. Chem. 657, 163 (2002). https://doi.org/10.1016/S0022-328X(02)01419-5

    Article  CAS  Google Scholar 

  19. A. P. Zhdanov, V. V. Voinova, I. N. Klyukin, et al., Russ. J. Coord. Chem. 45, 563 (2019). https://doi.org/10.1134/S1070328419080098

    Article  CAS  Google Scholar 

  20. J. Holub, S. El Anwar, T. Jelinek, et al., Eur. J. Inorg. Chem. 2017, 4499 (2017). https://doi.org/10.1002/ejic.201700651

    Article  CAS  Google Scholar 

  21. P. Kaszyński and B. Ringstrand, Angew. Chem., Int. Ed. Engl. 54, 6576 (2015). https://doi.org/10.1002/anie.201411858

    Article  CAS  PubMed  Google Scholar 

  22. E. Rzeszotarska, I. Novozhilova, and P. Kaszynski, Inorg. Chem. 56, 14351 (2017). https://doi.org/10.1021/acs.inorgchem.7b02477

    Article  CAS  PubMed  Google Scholar 

  23. P. Kaszynski, J. Huang, G. S. Jenkins, et al., Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A: Mol. Cryst. Liq. Cryst. 260, 315 (1995). https://doi.org/10.1080/10587259508038705

    Article  CAS  Google Scholar 

  24. S. Kapuściński, O. Hietsoi, A. Pietrzak, et al., Chem. Commun. 58, 851 (2022). https://doi.org/10.1039/D1CC06485A

    Article  Google Scholar 

  25. L. Jacob, E. Rzeszotarska, M. Koyioni, et al., Chem. Mater. 34, 6476 (2022). https://doi.org/10.1021/acs.chemmater.2c01165

    Article  CAS  Google Scholar 

  26. S. Kapuscinski, M. B. Abdulmojeed, T. E. Schafer, et al., Inorg. Chem. Front. 8, 1066 (2021). https://doi.org/10.1039/d0qi01353f

    Article  CAS  Google Scholar 

  27. A. Jankowiak, A. Baliński, J. E. Harvey, et al., J. Mater. Chem. C: Mater. 1, 1144 (2013). https://doi.org/10.1039/c2tc00547f

    Article  CAS  Google Scholar 

  28. R. Zurawiński, R. Jakubowski, S. Domagała, et al., Inorg. Chem. 57, 10442 (2018). https://doi.org/10.1021/acs.inorgchem.8b01701

    Article  CAS  PubMed  Google Scholar 

  29. O. Hietsoi, S. P. Kapuściński, A. C. Friedli, et al., J. Mol. Struct. 1284, 135324 (2023). https://doi.org/10.1016/j.molstruc.2023.135324

    Article  CAS  Google Scholar 

  30. A. V. Burdenkova, A. P. Zhdanov, I. N. Klyukin, et al., Russ. J. Inorg. Chem. 66, 1616 (2021). https://doi.org/10.1134/S0036023621110036

    Article  CAS  Google Scholar 

  31. A. P. Zhdanov, I. N. Polyakova, G. A. Razgonyaeva, et al., Russ. J. Inorg. Chem. 56, 847 (2011). https://doi.org/10.1134/S003602361106026X

    Article  CAS  Google Scholar 

  32. A. V. Nelyubin, I. N. Klyukin, A. S. Novikov, et al., Mendeleev Commun. 31, 201 (2021). https://doi.org/10.1016/j.mencom.2021.03.018

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out using the equipment of the Center for Shared Facility of the Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, operating with the support of the State Assignment of the Institute of General and Inorganic Chemistry of the Russian Academy of Sciences in the field of fundamental scientific research.

Funding

This work was supported by the Russian Science Foundation (grant no. 21-73-10292).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Zhdanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bil’bulyan, A.A., Nelyubin, A.V., Selivanov, N.A. et al. New Method for Synthesis of Substituted 1-Amidine-closo-decaborates [1-B10H9NH=C(R1)NHR2] (R1 = Me, iPr, Ph; R2 = nBu, Bn). Russ. J. Inorg. Chem. 68, 1511–1515 (2023). https://doi.org/10.1134/S0036023623601733

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623601733

Keywords:

Navigation