Skip to main content
Log in

Phase Equilibria in the Cu2Se–Cu8SiSe6–Cu8GeSe6 System

  • PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Phase equilibria in the Cu2Se–Cu8SiSe6–Cu8GeSe6 area of the Cu2Se–SiSe2–GeSe2 system have been studied using differential thermal analysis (DTA), X-ray powder diffraction analysis (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDX). The results served to plot a Т–х diagram of the Cu8SiSe6–Cu8GeSe6 boundary system, a series of polythermal sections, and a 300-K isothermal section of the phase diagram and a liquidus surface projection for the title system. The primary crystallization and homogeneity fields of phases, and the characters and temperatures of invariant and monovariant equilibria have been determined. In the Cu8SiSe6–Cu8GeSe6 boundary system, continuous solid solutions have been found to exist between the high-temperature phases of the terminal compounds and extensive homogeneity area based on their low-temperature phases were found. The crystal lattice types and unit cell parameters have been determined for the terminal compounds and both phases of solid solutions using X-ray powder diffraction data. The prepared phases of variable composition are of interest as environmentally friendly functional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

REFERENCES

  1. M. B. Babanly, Yu. A. Yusibov, and V. T. Abishev, Three-Component Chalcogenides Based on Copper and Silver (Izd-vo BGU, Baku, 1993) [in Russian].

    Google Scholar 

  2. Q. He, T. Qian, J. Zai, et al., J. Mater. Chem. A 3, 20359 (2015). https://doi.org/10.1039/C5TA05304H

    Article  CAS  Google Scholar 

  3. I. Semkiv, H. Ilchuk, M. Pawlowski, et al., Opto-Electronics Rev. 25, 37 (2017). https://doi.org/10.1016/j.opelre.2017.04.002

    Article  Google Scholar 

  4. C. Yang, Y. Luo, Y. Xia, et al., ACS Appl. Mater. Interfaces 13, 56329 (2021). https://doi.org/10.1021/acsami.1c17548

    Article  CAS  PubMed  Google Scholar 

  5. T. Chen, L. Zhang, Z. Zhang, et al., ACS Appl. Mater. Interfaces 11, 40808 (2019). https://doi.org/10.1021/acsami.9b13313

    Article  CAS  PubMed  Google Scholar 

  6. A. Studenyak, V. Pogodin, V. Studenyak, et al., Solid State Ionics 345, 115183 (2020). https://doi.org/10.1016/j.ssi.2019.115183

    Article  CAS  Google Scholar 

  7. A. K. Ivanov-Shchits and I. V. Murin, Solid State Ionics, vol. 1 (Izd-vo St. Peterb. Univ. St. Petersburg, 2000) [in Russian].

    Google Scholar 

  8. B. K. Heep, K. S. Weldert, Y. Krysiak, et al., Chem. Mater. 29, 4833 (2017). https://doi.org/10.1021/acs.chemmater.7b00767

    Article  CAS  Google Scholar 

  9. O. M. Ayoola, A. Buldum, S. Farhad, et al., Energies 15, 7288 (2022). https://doi.org/10.3390/en15197288

    Article  CAS  Google Scholar 

  10. R. M. Sardarly, G. M. Ashirov, L. F. Mashadiyeva, et al., Mod. Phys. Lett. B 36, 2250171 (2022). https://doi.org/10.1142/S0217984922501718

    Article  CAS  Google Scholar 

  11. A. I. Pogodin, M. J. Filep, V. I. Studenyak, et al., J. Alloys Compd. 926, 166873 (2022). https://doi.org/10.1016/j.jallcom.2022.166873

    Article  CAS  Google Scholar 

  12. L. Zhou, N. Minafra, W. G. Zeier, et al., Acc. Chem. Res. 54, 2717 (2021). https://doi.org/10.1021/acs.accounts.0c00874

    Article  CAS  PubMed  Google Scholar 

  13. S. Lin, W. Li, and Y. Pei, Mater. Today 48, 198 (2021). https://doi.org/10.1016/j.mattod.2021.01.007

    Article  CAS  Google Scholar 

  14. Z. Li, C. Liu, X. Zhang, et al., Org. Electron. 45, 247 (2017). https://doi.org/10.1016/j.orgel.2017.03.029

    Article  CAS  Google Scholar 

  15. Z. Jin, Y. Xiong, K. Zhao, et al., Mater. Today Phys. 19, 100410 (2021). https://doi.org/10.1016/j.mtphys.2021.100410

    Article  CAS  Google Scholar 

  16. Y. Fan, G. Wang, R. Wang, et al., J. Alloys Compd. 822, 153665 (2020). https://doi.org/10.1016/j.jallcom.2020.153665

    Article  CAS  Google Scholar 

  17. X. Shen, C. Yang, Y. Liu, et al., ACS Appl. Mater. Interfaces 11, 2168 (2019). https://doi.org/10.1021/acsami.8b19819

    Article  CAS  PubMed  Google Scholar 

  18. M. Jin, S. Lin, W. Li, et al., Chem. Mater. 31, 2603 (2019). https://doi.org/10.1021/acs.chemmater.9b00393

    Article  CAS  Google Scholar 

  19. B. Jiang, P. Qiu, E. Eikeland, et al., J. Mater. Chem. C 5, 943 (2017). https://doi.org/10.1039/C6TC05068A

    Article  CAS  Google Scholar 

  20. C. Yang, Y. Luo, X. Li, et al., RSC Adv. 11, 3732 (2021). https://doi.org/10.1039/D0RA10454J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. W. Li, S. Lin, B. Ge, et al., Adv. Sci. 3, 1600196 (2016). https://doi.org/10.1002/advs.201600196

    Article  CAS  Google Scholar 

  22. Q. Jiang, S. Li, Y. Luo, et al., ACS Appl. Mater. Interfaces 12, 54653 (2020). https://doi.org/10.1021/acsami.0c15877

    Article  CAS  PubMed  Google Scholar 

  23. D. R. F. West, Ternary Phase Diagrams in Materials Science (CRC Press, Boca Raton, FL, 2013). https://doi.org/10.1201/9781003077213

    Book  Google Scholar 

  24. H. Saka, Introduction To Phase Diagrams in Materials Science and Engineering (World Scientific Publishing Company, London, 2020). https://doi.org/10.1142/11368

    Book  Google Scholar 

  25. M. B. Babanly, L. F. Mashadiyeva, D. M. Babanly, et al., Russ. J. Inorg. Chem. 64, 1649 (2019). https://doi.org/10.1134/S0036023619130035

    Article  CAS  Google Scholar 

  26. M. B. Babanly, E. V. Chulkov, Z. S. Aliev, et al., Russ. J. Inorg. Chem. 62, 1703 (2017). https://doi.org/10.1134/S0036023617130034

    Article  CAS  Google Scholar 

  27. S. Z. Imamaliyeva, D. M. Babanly, D. B. Tagiev, et al., Russ. J. Inorg. Chem. 63, 1703 (2018). https://doi.org/10.1134/S0036023618130041

    Article  Google Scholar 

  28. A. V. Novoselova and V. B. Lazarev, Physicochemical Properties of Semiconductor Substances: Handbook (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  29. H. Hahn, H. Schulze, and L. Sechser, Naturwissenschaften 52, 451 (1965). https://doi.org/10.1007/BF00627053

    Article  CAS  Google Scholar 

  30. O. Gorochov, Bull. Soc. Chim. Fr. 6, 2263 (1968).

    Google Scholar 

  31. Z. M. Alieva, S. M. Bagkheri, I. J. Alverdiev, et al., Inorg. Mater. 50, 981 (2014). https://doi.org/10.1134/S002016851410001X

    Article  CAS  Google Scholar 

  32. S. M. Bagheri, S. Z. Imamaliyeva, L. F. Mashadiyeva, et al., Int. J. Adv. Sci. Tech. Res. 4, 291 (2014).

    Google Scholar 

  33. I. J. Alverdiev, S. M. Bagkheri, Z. M. Alieva, et al., Inorg. Chem. 53, 786 (2017). https://doi.org/10.1134/S0020168517080027

    Article  CAS  Google Scholar 

  34. Z. M. Aliyeva, S. M. Bagheri, Z. S. Aliev, et al., J. Alloys Compd. 611, 395 (2014). https://doi.org/10.1016/j.jallcom.2014.05.112

    Article  CAS  Google Scholar 

  35. I. J. Alverdiyev, Z. S. Aliev, S. M. Bagheri, et al., J. Alloys Compd. 691, 255 (2017). https://doi.org/10.1016/j.jallcom.2016.08.251

    Article  CAS  Google Scholar 

  36. L. F. Mashadieva, Z. M. Alieva, R. J. Mirzoeva, et al., Russ. J. Inorg. Chem. 67, 670 (2022). https://doi.org/10.1134/S0036023622050126

    Article  CAS  Google Scholar 

  37. U. Bayramova, A. Poladova, and L. Mashadiyeva, New Mater. Comp. Appl. 6, 276 (2022).

    CAS  Google Scholar 

  38. Binary Alloy Phase Diagrams, Ed. by T. B. Massalski (ASM International, Materials Park, Ohio, 1990). https://doi.org/10.1002/adma.19910031215

    Book  Google Scholar 

  39. O. Shpak, Yu. Kogut, A. Fedorchuk, et al., Nauchn. Vestn. Sredneevrop. Nats. Univ. im. Lesi Ukrainki, Ser. Khim. Nauki 21, 39 (2014).

    Google Scholar 

  40. I. D. Olekseyuk, L. V. Piskach, and O. V. Parasyuk, Zh. Neorg. Khim. 43, 516 (1998).

    CAS  Google Scholar 

  41. Ishii M., Onoda M., Shibata K., Solid State Ionics 121, 11 (1999). https://doi.org/10.1016/S0167-2738(98)00305-1

    Article  CAS  Google Scholar 

  42. V. Tomashik, Non-Ferrous Metal Ternary Systems. Semiconductor Systems: Phase Diagrams, Crystallographic and Thermodynamic Data (Springer-Verlag Heidelberg, Berlin, 2006). https://doi.org/10.1007/10915981_23

    Book  Google Scholar 

  43. M. Onoda, M. Ishii, P. Pattison, et al., J. Solid State Chem. 146, 355 (1999). https://doi.org/10.1006/jssc.1999.8362

    Article  CAS  Google Scholar 

  44. V. Moroz, Izv. Akad. Nauk SSSR 26, 1830 (1990).

    CAS  Google Scholar 

  45. V. M. Glazov, A. S. Burkhanov, and N. M. Saleeva, Izv. Akad. Nauk SSSR 13, 917 (1977).

    CAS  Google Scholar 

  46. V. I. Lutsyk, V. P. Vorob’eva, and S. Ya. Shodorova, Russ. J. Phys. Chem. A 89, 2331 (2015). https://doi.org/10.1134/S0036024415130245

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Azerbaijan Science Foundation (project No. AEF-MCG-2022-1(42)-12/10/4-M-10).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. F. Mashadieva or M. B. Babanly.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bairamova, U.R., Babanly, K.N., Mashadieva, L.F. et al. Phase Equilibria in the Cu2Se–Cu8SiSe6–Cu8GeSe6 System. Russ. J. Inorg. Chem. 68, 1611–1621 (2023). https://doi.org/10.1134/S0036023623602027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623602027

Keywords:

Navigation