Skip to main content
Log in

Synthesis and High-Temperature Heat Capacity of LaMgAl11O19 and SmMgAl11O19 Hexaaluminates

  • PHYSICAL METHODS OF INVESTIGATION
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The processes occurring during heating of a stoichiometric mixture of lanthanum, samarium, magnesium, and aluminum hydroxides synthesized by the reverse precipitation method have been studied by DTA/TG and X-ray powder diffraction methods. The conditions for the synthesis of single-phase LaMgAl11O19 and SmMgAl11O19 samples of the magnetoplumbite structure type have been determined, and the isobaric heat capacity has been measured in the temperature range 317–1817 K, showing the absence of structural transformations in this range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. N. P. Bansal and D. Zhu, Surf. Coat. Technol. 202, 2698 (2008).

    Article  CAS  Google Scholar 

  2. R. Gadow and M. Lischka, Surf. Coat. Technol. 151–152, 392 (2002).

    Article  Google Scholar 

  3. C. Friedrich, R. Gadow, and T. Schirmer, J. Therm. Spray Technol. 10, 592 (2010).

    Article  Google Scholar 

  4. Y. Zhang, Y. Wang, M. O. Jarligo, et al., Opt. Lasers Eng. 46, 601 (2008).

    Article  Google Scholar 

  5. X. Q. Cao, Y. F. Zhang, J. F. Zhang, et al., J. Eur. Ceram. Soc. 28, 1979 (2008).

    Article  CAS  Google Scholar 

  6. N. Iyi, S. Takekawa, and S. Kimura, J. Solid State Chem. 83, 8 (1989).

    Article  CAS  Google Scholar 

  7. Z.-G. Liu, J.-H. Ouyang, Y. Zhou, et al., J. Eur. Ceram. Soc. 29, 647 (2009).

    Article  CAS  Google Scholar 

  8. Z.-G. Liu, J.-H. Ouyang, Y. Zhou, et al., J. Alloys Compd. 472, 319 (2009).

    Article  CAS  Google Scholar 

  9. Z.-G. Liu, J.-H. Ouyang, Y. Zhou, et al., Phil. Magazine 89, 553 (2009).

    Article  CAS  Google Scholar 

  10. Z. Xu, L. He, R. Mu, et al., J. Alloys Compd. 473, 509 (2009).

    Article  CAS  Google Scholar 

  11. Z. Xu, L. He, X. Zhong, et al., J. Alloys Compd. 480, 220 (2009).

    Article  CAS  Google Scholar 

  12. H. Lu, C.-A. Wang, C. Zhang, et al., Ceram. Int. 40, 16273 (2014).

    Article  CAS  Google Scholar 

  13. X. Lu, J. Yuan, M. Xu, et al., Ceram. Int. 47, 28892 (2021).

    Article  CAS  Google Scholar 

  14. Y.-H. Wang, J.-H. Ouyang, and Zh.-G. Liu, J. Alloys Compd. 485, 734 (2009).

    Article  CAS  Google Scholar 

  15. V. N. Guskov, A. V. Tyurin, A. V. Guskov, et al., Ceram. Int. 46, 12822 (2020).

    Article  CAS  Google Scholar 

  16. A. V. Tyurin, A. V. Khoroshilov, V. N. Guskov, et al., Russ. J. Inorg. Chem. 63, 1599 (2018).

    Article  CAS  Google Scholar 

  17. J. Meija, T. B. Coplen, M. Berglund, et al., Pure Appl. Chem. 88, 265 (2016).

    Article  CAS  Google Scholar 

  18. D. Lefebvre, J. Thery, and D. Vivien, J. Am. Ceram. Soc. 69, 289 (1986).

    Article  Google Scholar 

  19. W. Schonwelski, F. Haberey, R. Leckebuch, et al., J. Am. Ceram. Soc. 69, 7 (1986).

    Article  Google Scholar 

  20. G. A. Arzumanyan, K. S. Bagdasarov, N. G. Tsorikishvili, et al., Neorgan. Mater. 23, 1051 (1987).

    Google Scholar 

  21. R. Brandt, H. K. Muller Buschbaum, Z. Anorg. Allg. Chem. 510, 163 (1984).

    Article  CAS  Google Scholar 

  22. A. Kahn, A. M. Lejus, M. Madsac, et al., J. Appl. Phys. 52, 6864 (1981).

    Article  CAS  Google Scholar 

  23. V. Dolezal, L. Nadherny, K. Rubesova, et al., Ceram. Int. 45, 11233 (2019).

    Article  CAS  Google Scholar 

  24. K. Lu, C.-A. Wang, C. Zhang, et al., J. Eur. Ceram. Soc. 35, 1297 (2015).

    Article  CAS  Google Scholar 

  25. V. A. Efremov, N. G. Chernaya, V. K. Trunov, and V. F. Pisarenko, Kristallografiya 33, 38 (1988).

    CAS  Google Scholar 

  26. E. D. Peter, F. Morgan, and A. Jamie, J. Am. Ceram. Soc. 69, 157 (1986).

    Google Scholar 

  27. J. Leitner, P. Vonka, D. Sedmidubsky, and P. Svoboda, Thermochim. Acta 497, 7 (2010).

    Article  CAS  Google Scholar 

  28. Thermal Constants of Substances, Ed. by V. P. Glushko, (Iz-vo AN SSSR, Moscow, VINITI, 1965–1982) [in Russian]. http://www.chem.msu.ru

  29. M. W. Chase, Jr., J. Phys. Chem. Data, No. 9, 1951 (1998).

  30. R. J. M. Konings, O. Beneš, A. Kovács, et al., J. Phys. Chem. Ref. Data 43, 013101 (2014).

    Article  Google Scholar 

  31. C. G. Maier and K. K. Kelley, J. Am.Chem. Soc 54, 3243 (1932).

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (project no. 23-13-00051), https://rscf.ru/project/23-13-00051/, with the use of equipment of the Joint Research Center for Physical Methods of Investigation, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Gagarin.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gagarin, P.G., Guskov, A.V., Guskov, V.N. et al. Synthesis and High-Temperature Heat Capacity of LaMgAl11O19 and SmMgAl11O19 Hexaaluminates. Russ. J. Inorg. Chem. 68, 1599–1605 (2023). https://doi.org/10.1134/S0036023623602064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623602064

Keywords:

Navigation