Skip to main content
Log in

Sorption of Radionuclides on Amorphous and Crystalline Cerium(IV) Phosphates

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The sorption properties of amorphous cerium(IV) hydrogen phosphate and crystalline phases NH4Ce2(PO4)3, (NH4)2Ce(PO4)2·H2O, and Ce(OH)PO4 towards the 243Am(III), 232Th(IV), 237Np(V), and 233, 238U(VI) radionuclides were studied in aqueous media at pH 1, 4, 7, and 10 for 24 h. The highest degree of sorption (up to 100%) was found for amorphous cerium(IV) hydrogen phosphate. The pH dependences of radionuclide sorption for crystalline compounds were shown to be similar to one another: the highest sorption was observed at pH 7 (up to 100% for 243Am(III)), while the lowest values were observed for pH 10 and 1. An exception was provided by 237Np(V), the sorption of which was close to zero in the pH range of 1–7 and reached 60% at pH 10. Keeping amorphous and crystalline cerium(IV) phosphates in acid medium leads to quantitative desorption of all of the tested radionuclides within the first 5 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. A. Chakraborty, A. Pal, and B. B. Saha, Materials 15, 8818 (2022). https://doi.org/10.3390/ma15248818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. S. Yu, X. Wang, X. Tan, et al., Inorg. Chem. Front. 2, 593 (2015). https://doi.org/10.1039/C4QI00221K

    Article  CAS  Google Scholar 

  3. R. I. Korneikov, V. I. Ivanenko, and S. V. Aksenova, Inorg. Mater. 58, 142 (2022). https://doi.org/10.1134/S0020168522020078

    Article  CAS  Google Scholar 

  4. S. B. Yarusova, P. S. Gordienko, O. O. Shichalin, et al., Russ. J. Inorg. Chem. 67, 1386 (2022). https://doi.org/10.1134/S0036023622090194

    Article  CAS  Google Scholar 

  5. O. Hyatt, Materials 12, 3611 (2019). https://doi.org/10.3390/ma12213611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. S. Neumeier, Y. Arinicheva, Y. Ji, et al., Radiochim. Acta 105, 961 (2017). https://doi.org/10.1515/ract-2017-2819

    Article  CAS  Google Scholar 

  7. A. J. Locock, Crystal Chemistry of Actinide Phosphates and Arsenates, Ed. by S. V. Krivovichev, P. C. Burns, and I. G. Tananaev (Elsevier, Amsterdam, 2007).

    Book  Google Scholar 

  8. A. I. Orlova and M. I. Ojovan, Materials 12, 2638 (2019). https://doi.org/10.3390/ma12162638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. R. Drot, C. Lindecker, B. Fourest, et al., New J. Chem. 22, 1105 (1998). https://doi.org/10.1039/a803215g

    Article  CAS  Google Scholar 

  10. J. Wang, Y. Wei, J. Wang, et al., Ceram. Int. 48, 12772 (2022). https://doi.org/10.1016/j.ceramint.2022.01.147

    Article  CAS  Google Scholar 

  11. D. Bregiroux, K. Popa, and G. Wallez, J. Solid State Chem. 230, 26 (2015). https://doi.org/10.1016/j.jssc.2015.06.010

    Article  CAS  Google Scholar 

  12. N. Dacheux, N. Clavier, A. C. Robisson, et al., Comptes Rendus Chim. 7, 1141 (2004). https://doi.org/10.1016/j.crci.2004.02.019

    Article  CAS  Google Scholar 

  13. H. Hayashi, T. Ebina, Y. Onodera, et al., Bull. Chem. Soc. Jpn. 70, 1701 (1997). https://doi.org/10.1246/bcsj.70.1701

    Article  CAS  Google Scholar 

  14. A. Yu. Romanchuk, T. O. Shekunova, V. G. Petrov, et al., Radiochemistry 60, 613 (2018). https://doi.org/10.1134/S1066362218060085

    Article  CAS  Google Scholar 

  15. S. S. Metwally, B. El-Gammal, H. F. Aly, et al., Sep. Sci. Technol. 46, 1808 (2011). https://doi.org/10.1080/01496395.2011.572328

    Article  CAS  Google Scholar 

  16. B. El-Gammal, S. S. Metwally, H. F. Aly, et al., Desalin. Water Treat. 46, 124 (2012). https://doi.org/10.1080/19443994.2012.677412

    Article  CAS  Google Scholar 

  17. S. Bevara, S. N. Achary, S. J. Patwe, et al., AIP Conf. Proc. 1731, 140040 (2016). https://doi.org/10.1063/1.4948206

    Article  Google Scholar 

  18. A. Yu. Romanchuk, T. O. Shekunova, A. I. Larina, et al., Radiochemistry 61, 719 (2019). https://doi.org/10.1134/S1066362219060134

    Article  CAS  Google Scholar 

  19. M. A. Salvado, P. Pertierra, A. I. Bortun, et al., Inorg. Chem. 47, 7207 (2008). https://doi.org/10.1021/ic800818c

    Article  CAS  PubMed  Google Scholar 

  20. V. Brandel and N. Dacheux, J. Solid State Chem. 177, 4755 (2004). https://doi.org/10.1016/j.jssc.2004.08.008

    Article  CAS  Google Scholar 

  21. N. Dacheux, N. Clavier, G. Wallez, et al., Solid State Sci. 9, 619 (2007). https://doi.org/10.1016/j.solidstatesciences.2007.04.015

    Article  CAS  Google Scholar 

  22. K. E. Yorov, T. O. Shekunova, A. E. Baranchikov, et al., J. Sol-Gel Sci. Technol. 85, 574 (2018). https://doi.org/10.1007/s10971-018-4584-3

    Article  Google Scholar 

  23. T. O. Shekunova, A. E. Baranchikov, O. S. Ivanova, et al., J. Non. Cryst. Solids 447, 183 (2016). https://doi.org/10.1016/j.jnoncrysol.2016.06.012

    Article  CAS  Google Scholar 

  24. V. K. Ivanov, O. S. Polezhaeva, A. E. Baranchikov, et al., Inorg. Chem. 46, 43 (2010). https://doi.org/10.1134/S0020168510010103

    Article  CAS  Google Scholar 

  25. T. O. Shekunova, S. Y. Istomin, A. V. Mironov, et al., Eur. J. Inorg. Chem. 2019, 3242 (2019). https://doi.org/10.1002/ejic.201801182

    Article  CAS  Google Scholar 

  26. T. O. Kozlova, A. V. Mironov, S. Y. Istomin, et al., Chem. A Eur. J. 26, 12188 (2020). https://doi.org/10.1002/chem.202002527

    Article  CAS  Google Scholar 

  27. S. B. Savvin, Arsenazo III. Methods for Photometric Determination of Trace and Actinide Elements (Atomizdat, Moscow, 1966) [in Russian].

    Google Scholar 

  28. S. K. Shakshooki, F. A. El-Akari, S. M. El-Fituri, et al., Adv. Mater. Res. 856, 3 (2014). https://doi.org/10.4028/www.scientific.net/AMR.856.3

  29. A. Somya, M. Z. A. Rafiquee, and K. G. Varshney, Colloids Surfaces A Physicochem. Eng. Asp. 336, 142 (2009). https://doi.org/10.1016/j.colsurfa.2008.11.036

    Article  CAS  Google Scholar 

  30. K. M. El-Azony, AydiaM. Ismail, and A. A. El-Mohty, J. Radioanal. Nucl. Chem. 289, 381 (2011). https://doi.org/10.1007/s10967-011-1079-x

    Article  CAS  Google Scholar 

  31. H. Hayashi, K. Torii, and S. I. Nakata, J. Mater. Chem. 7, 557 (1997). https://doi.org/10.1039/a606397g

    Article  CAS  Google Scholar 

  32. K. Ishii, Y. Kimura, T. Yamazaki, et al., RSC Adv. 7, 35711 (2017). https://doi.org/10.1039/c7ra06850f

    Article  CAS  Google Scholar 

  33. M. A. Salvado, P. Pertierra, C. Trobajo, et al., J. Am. Chem. Soc. 129, 10970 (2007). https://doi.org/10.1021/ja0710297

    Article  CAS  PubMed  Google Scholar 

  34. I. V. Tronev, E. D. Sheichenko, L. S. Razvorotneva, et al., Russ. J. Inorg. Chem. (2023). https://doi.org/10.1134/S0036023622602744

  35. P. Thakur, R. C. Moore, and G. R. Choppin, Radiochim. Acta 94, 645 (2006). https://doi.org/10.1524/ract.2006.94.9-11.645

    Article  CAS  Google Scholar 

  36. Y. Gao, P. V. Dau, B. F. Parker, et al., Inorg. Chem. 57, 6965 (2018). https://doi.org/10.1021/acs.inorgchem.8b00654

    Article  CAS  PubMed  Google Scholar 

  37. T. O. Kozlova, D. N. Vasileva, D. A. Kozlov, et al., Russ. J. Inorg. Chem. 67, 1901 (2022). https://doi.org/10.1134/S0036023622601271

    Article  CAS  Google Scholar 

  38. C. Gausse, S. Szenknect, D. W. Qin, et al., Eur. J. Inorg. Chem. 2016, 4615 (2016). https://doi.org/10.1002/ejic.201600517

    Article  CAS  Google Scholar 

  39. B. Fourest, G. Lagarde, J. Perrone, et al., New J. Chem. 23, 645 (1999). https://doi.org/10.1039/a900818g

    Article  CAS  Google Scholar 

  40. G. R. Choppin, Mar. Chem. 99, 83 (2006). https://doi.org/10.1016/j.marchem.2005.03.011

    Article  CAS  Google Scholar 

  41. M. Tang, J. Chen, P. Wang, et al., Environ. Sci. Nano 5, 2304 (2018). https://doi.org/10.1039/C8EN00761F

    Article  CAS  Google Scholar 

  42. G. Zhijun, N. Lijun, and T. Zuyi, J. Radioanal. Nucl. Chem. 266, 333 (2005). https://doi.org/10.1007/s10967-005-0912-5

    Article  CAS  Google Scholar 

  43. D. R. Fröhlich and U. Kaplan, J. Radioanal. Nucl. Chem. 318, 1785 (2018). https://doi.org/10.1007/s10967-018-6310-6

    Article  CAS  Google Scholar 

  44. L. Weijuan and T. Zuyi, J. Radioanal. Nucl. Chem. 254, 187 (2002). https://doi.org/10.1023/A:1020874405480

    Article  Google Scholar 

  45. A. Křepelová, S. Sachs, and G. Bernhard, Radiochim. Acta 99, 253 (2011). https://doi.org/10.1524/ract.2011.1829

    Article  CAS  Google Scholar 

  46. C. J. Chisholm-Brause, J. M. Berg, R. A. Matzner, et al., J. Colloid Interface Sci. 233, 38 (2001). https://doi.org/10.1006/jcis.2000.7227

    Article  CAS  PubMed  Google Scholar 

  47. P. Thakur, R. C. Moore, and G. R. Choppin, Radiochim. Acta 93, 385 (2005). https://doi.org/10.1524/ract.2005.93.7.385

    Article  CAS  Google Scholar 

  48. R. Drot and E. Simoni, Langmuir 14, 4820 (1999). https://doi.org/10.1021/la981596v

    Article  Google Scholar 

  49. D. C. Girvin, L. L. Ames, A. P. Schwab, et al., J. Colloid Interface Sci. 141, 67 (1991). https://doi.org/10.1016/0021-9797(91)90303-P

    Article  CAS  Google Scholar 

  50. O. Pourret, J.-C. Bollinger, A. Hursthouse, et al., Sci. Total Environ. 838, 156545 (2022). https://doi.org/10.1016/j.scitotenv.2022.156545

    Article  CAS  PubMed  Google Scholar 

  51. D. G. Strawn, Soil Syst. 5, 13 (2021). https://doi.org/10.3390/soilsystems5010013

    Article  CAS  Google Scholar 

  52. A. Y. Romanchuk, N. N. Gracheva, K. I. Bryukhanova, et al., Mendeleev Commun. 28, 303 (2018). https://doi.org/10.1016/j.mencom.2018.05.025

    Article  CAS  Google Scholar 

  53. J. Katz, G. Seaborg, and L. Morss, The Chemistry of the Actinide Elements, vol. 2 (Springer Dordrecht, 1986). https://doi.org/10.1007/978-94-009-3155-8

    Book  Google Scholar 

  54. N. Dacheux, N. Clavier, and R. Podor, Am. Mineral. 98, 833 (2013). https://doi.org/10.2138/am.2013.4307

    Article  CAS  Google Scholar 

  55. H. Schlenz, J. Heuser, A. Neumann, et al., Z. Kristallogr. 228, 113 (2013). https://doi.org/10.1524/zkri.2013.1597

    Article  CAS  Google Scholar 

  56. N. Clavier, R. Podor, and N. Dacheux, J. Eur. Ceram. Soc. 31, 941 (2011). https://doi.org/10.1016/j.jeurceramsoc.2010.12.019

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the President Grant for Young Scientists (grant no. SP-5430.2021.2) using equipment of the Joint Research Center for Physical Methods of Research of the Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences. Thorium(IV) sorption and desorption experiments were carried out within the state assignment for the Vernadsky Institute of Geochemistry and Analytical Chemistry. The authors are grateful to S. Yu. Kottsov for analysis of the specific surface of cerium(IV) orthophosphates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. O. Kozlova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlova, T.O., Khvorostinin, E.Y., Rodionova, A.A. et al. Sorption of Radionuclides on Amorphous and Crystalline Cerium(IV) Phosphates. Russ. J. Inorg. Chem. 68, 1503–1510 (2023). https://doi.org/10.1134/S0036023623601964

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623601964

Keywords:

Navigation