Skip to main content
Log in

Reaction of Highly Dispersed Nickel Metal Powders with Pd(II) Aqueous Solutions under Hydrothermal Conditions

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The processes of contact reaction of nickel metal powders with aggregated particle sizes of 300–400 nm with aqueous solutions of palladium(II) in autoclaves at elevated temperatures in acidic and alkaline media have been studied. It has been found that when metallic nickel contacts with aqueous solutions of palladium(II) chloride in 0.01 M hydrochloric acid at temperatures of 100 and 130°C for 15 min, the concentration of divalent palladium ions decreases to zero. The process is accompanied by a partial transition of nickel into solution. The precipitates are a mixture of metallic particles of nickel and palladium of variable compositions. In the case of contact of metallic nickel with solutions of tetraammine palladium(II) chloride at temperatures of 160 and 170°C in a medium of 0.1 M potassium hydroxide, metal palladium particles 5–25 nm in size are formed on the surface of larger nickel particles. The structure of bimetallic particles has been determined by X-ray photoelectron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. M. Jia, C. Choi, T. S. Wu, et al., Chem. Sci. 9, 8775 (2018). https://doi.org/10.1039/C8SC03732A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. S. Ali, A. S. Sharma, W. Ahmad, et al., CRC Crit. Rev. Anal. Chem. 51, 454 (2021). https://doi.org/10.1080/10408347.2020.1743964

    Article  CAS  PubMed  Google Scholar 

  3. N. Jamila, N. Khan, A. Bibi, et al., J. Clim. 13, 6425 (2020). https://doi.org/10.1016/j.arabjc.2020.06.001

    Article  CAS  Google Scholar 

  4. A. Gour and N. K. Jain, Artif. Cells Nanomed. Biotechnol. 47, 844 (2019). https://doi.org/10.1080/21691401.2019.1577878

    Article  CAS  PubMed  Google Scholar 

  5. C. H. Liu, R. H. Liu, Q. J. Sun, J. B. Chang, et al., Nanoscale 7, 6356 (2015). https://doi.org/10.1039/C4NR06855F

    Article  CAS  PubMed  Google Scholar 

  6. A. Y. Soloveva, N. K. Eremenko, I. I. Obraztsova, et al., Russ. J. Inorg. Chem. 63, 444 (2018). https://doi.org/10.1134/S0036023618040204

    Article  CAS  Google Scholar 

  7. M. Schnedlitz, R. Fernandez-Perea, D. Knez, et al., J. Phys. Chem. 123, 20037.

  8. D. Chen, S. Liu, J. Li, N. Zhao, et al., J. Alloys Compd. 475, 494 (2009). https://doi.org/10.1016/j.jallcom.2008.07.115

    Article  CAS  Google Scholar 

  9. C. V. Almeida, G. Tremiliosi-Filho, K. I. Eguiluz, and G. R. Salazar-Banda, J. Catal. 391, 175 (2020). https://doi.org/10.1016/j.jcat.2020.08.024

    Article  CAS  Google Scholar 

  10. M. Spasova, V. Salgueiriño-Maceira, A. Schlachter, et al., J. Mater. Chem. 15, 2095 (2005). https://doi.org/10.1039/B502065D

    Article  CAS  Google Scholar 

  11. M. A. Correa-Duarte, M. Grzelczak, V. Salgueirino-Maceira, et al., J. Phys. Chem. B 109, 19060 (2005). https://doi.org/10.1021/jp0544890

    Article  CAS  PubMed  Google Scholar 

  12. W. Yin, R. H. Venderbosch, V. A. Yakovlev, et al., Energies 13, 285 (2020). https://doi.org/10.3390/en13010285

    Article  CAS  Google Scholar 

  13. N. A. Bumagin, Russ. J. Gen. Chem. 92, 832 (2022). https://doi.org/10.1134/S1070363222050127

    Article  CAS  Google Scholar 

  14. P. Srinoi, Y. -T. Chen, V. Vittur, M. Marquez, T. Lee, Appl. Sci. 8, 1106 (2018). https://doi.org/10.3390/app8071106

    Article  CAS  Google Scholar 

  15. G. Maduraiveeran, R. Rasik, M. Sasidharan, and W. Jin, J. Electroanal. Chem. 808, 259 (2018). https://doi.org/10.1016/j.jelechem.2017.12.027

    Article  CAS  Google Scholar 

  16. M. Šuljagić, D. Stanković, M. Mirković, et al., Russ. J. Inorg. Chem. 67 (Suppl. 1), 13 (2022). https://doi.org/10.1134/S003602362260201X

    Article  Google Scholar 

  17. J. Sun, F. Yang, D. Zhao, et al., ACS Appl. Mater. Interfaces 7, 6860 (2015). https://doi.org/10.1021/acsami.5b00434

    Article  CAS  PubMed  Google Scholar 

  18. J. Sopoušek, A. Kryštofová, M. Premović, et al., CALP-HAD: Comput. Coupling Phase Diagrams Thermochem. 58, 25 (2017). https://doi.org/10.1016/j.calphad.2017.05.002

    Article  CAS  Google Scholar 

  19. P. P. Fedorov, A. A. Popov, Y. V. Shubin, et al., Russ. J. Inorg. Chem. 67, 2018 (2022). https://doi.org/10.1134/S0036023622601453

    Article  CAS  Google Scholar 

  20. F. L. Jia, L. Z. Zhang, X. Y. Shang, and Y. Yang, Adv. Mater. 20, 1050 (2008). https://doi.org/10.1002/adma.200702159

    Article  CAS  Google Scholar 

  21. S. Senapati, S. K. Srivastava, S. B. Singh, and H. N. Mishra, J. Mater. Chem. 22, 6 899 (2012). https://doi.org/10.1039/C2JM00143H

  22. A. V. Egorysheva, O. G. Ellert, E. Y. Liberman, et al., Russ. J. Inorg. Chem. 67, 2127 (2022). https://doi.org/10.1134/S0036023622601349

    Article  CAS  Google Scholar 

  23. Y. V. Ioni, S. I. Chentsov, I. V. Sapkov, et al., Russ. J. Inorg. Chem. 67, 1711 (2022). https://doi.org/10.1134/S0036023622601076

    Article  CAS  Google Scholar 

  24. A. M. Vorobyev, A. I. Titkov, and O. A. Logutenko, Russ. J. Gen. Chem. 92, 430 (2022). https://doi.org/10.1134/S1070363222030100

    Article  CAS  Google Scholar 

  25. S. R. Yousefi, D. Ghanbari, M. Salavati-Niasari, et al., J. Mater. Sci.: Mater. Electron. 27, 1244 (2016). https://doi.org/10.1007/s10854-015-3882-6

    Article  CAS  Google Scholar 

  26. S. P. Gubin, Y. A. Koksharov, G. B. Khomutov, et al., Russ. Chem. Rev. 74, 489 (2005).

    Article  CAS  Google Scholar 

  27. Y. A. Zakharov, V. M. Pugachev, A. S. Bogomyakov, et al., J. Phys. Chem. 124, 1008. https://doi.org/10.1021/acs.jpcc.9b07897

  28. M. K. Shafique, T. Muhmood, S. Lin, et al., Mater. Res. Express 6, 108001 (2019).

    Article  Google Scholar 

  29. O. V. Belousov, R. V. Borisov, N. V. Belousova, et al., Russ. J. Inorg. Chem. 66, 1463 (2021). https://doi.org/10.1134/S003602362110003X

    Article  CAS  Google Scholar 

  30. E. V. Fesik, T. M. Buslaeva, T. I. Mel’nikova, et al., Inorg. Mater. 54, 1299 (2018). https://doi.org/10.1134/S0020168518120038

    Article  CAS  Google Scholar 

  31. H. Du, Y. Wang, H. Yuan, et al., Electrochim. Acta 196, 84 (2016). https://doi.org/10.1016/j.electacta.2016.02.190

    Article  CAS  Google Scholar 

  32. F. Zhang, Y. Chen, J. Zhao, et al., Chem. Lett. 33, 146 (2004). https://doi.org/10.1246/cl.2004.146

    Article  CAS  Google Scholar 

  33. S. B. Kashid, R. W. Raut, and Y. S. Malghe, Mater. Chem. Phys. 170, 24 (2016). https://doi.org/10.1016/j.matchemphys.2015.12.014

    Article  CAS  Google Scholar 

  34. R. V. Borisov, O. V. Belousov, A. M. Zhizhaev, et al., Russ. J. Inorg. Chem. 63, 308 (2018). https://doi.org/10.1134/S0036023618030038

    Article  Google Scholar 

  35. R. V. Borisov, O. V. Belousov, A. M. Zhizhaev, et al., Russ. Chem. Bull. 70, 1474 (2021). https://doi.org/10.1007/s11172-021-3242-z

    Article  CAS  Google Scholar 

  36. R. V. Borisov, O. V. Belousov, and A. M. Zhizhaev, Russ. J. Inorg. Chem. 65, 1623 (2020). https://doi.org/10.1134/S0036023620100034

    Article  CAS  Google Scholar 

  37. R. V. Borisov, O. V. Belousov, M. N. Likhatski, et al., Russ. Chem. Bull 71, 1164 (2022). https://doi.org/10.1007/s11172-022-3517-z

    Article  CAS  Google Scholar 

  38. O. V. Belousov, N. V. Belousova, A. V. Sirotina, et al., Langmuir 27, 11697 (2011). https://doi.org/10.1021/la202686x

    Article  CAS  PubMed  Google Scholar 

  39. A. P. Grosvenor, M. C. Biesinger, R. S. Smart, et al., Surf. Sci. 600, 1771 (2006). https://doi.org/10.1016/j.susc.2006.01.041

    Article  CAS  Google Scholar 

  40. M. Lenglet, F. Hochu, J. Durr, and M. H. Tuilier, Sol. St. Comm. 104, 793 (1997). https://doi.org/10.1016/S0038-1098(97)00273-1

    Article  CAS  Google Scholar 

  41. C. J. Jenks, S. L. Chang, J. W. Anderegg, et al., Phys. Rev. B 54, 6301 (1996). https://doi.org/10.1103/PhysRevB.54.6301

    Article  CAS  Google Scholar 

  42. A. L. Patterson, Phys. Rev. 56, 978 (1939). https://doi.org/10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out within the framework of the State Assignment of the Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences (project FWES-2021-0014) using the equipment of the Federal Research Center “Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Borisov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, R.V., Belousov, O.V., Likhatski, M.N. et al. Reaction of Highly Dispersed Nickel Metal Powders with Pd(II) Aqueous Solutions under Hydrothermal Conditions. Russ. J. Inorg. Chem. 68, 1523–1531 (2023). https://doi.org/10.1134/S0036023623601952

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623601952

Keywords:

Navigation