Skip to main content
Log in

Drug Repositioning Based on Deep Sparse Autoencoder and Drug–Disease Similarity

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Drug repositioning is critical to drug development. Previous drug repositioning methods mainly constructed drug–disease heterogeneous networks to extract drug–disease features. However, these methods faced difficulty when we are using structurally simple models to deal with complex heterogeneous networks. Therefore, in this study, the researchers introduced a drug repositioning method named DRDSA. The method utilizes a deep sparse autoencoder and integrates drug–disease similarities. First, the researchers constructed a drug–disease feature network by incorporating information from drug chemical structure, disease semantic data, and existing known drug–disease associations. Then, we learned the low-dimensional representation of the feature network using a deep sparse autoencoder. Finally, we utilized a deep neural network to make predictions on new drug–disease associations based on the feature representation. The experimental results show that our proposed method has achieved optimal results on all four benchmark datasets, especially on the CTD dataset where AUC and AUPR reached 0.9619 and 0.9676, respectively, outperforming other baseline methods. In the case study, the researchers predicted the top ten antiviral drugs for COVID-19. Remarkably, six out of these predictions were subsequently validated by other literature sources.

Graphical Abstract

Schematic diagrams of data processing and DRDSA model. A Construction of drug and disease feature vectors, B The workflow of DRDSA model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Publicly available datasets were analyzed in this study. These data can be found here: http://ctdbase.org/; https://github.com/luckymengmeng/HDVD.

References

  1. Collins FS (2016) Seeking a cure for one of the rarest diseases: progeria. Circulation 134:126–129. https://doi.org/10.1161/CIRCULATIONAHA.116.022965

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hurle MR, Yang L, Xie Q et al (2013) Computational drug repositioning: from data to therapeutics. Clin Pharmacol Ther 93:335–341. https://doi.org/10.1038/clpt.2013.1

    Article  CAS  PubMed  Google Scholar 

  3. Ashburn TT, Thor KB (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3:673–683. https://doi.org/10.1038/nrd1468

    Article  CAS  PubMed  Google Scholar 

  4. Lam W, Zhong N, Tan W (2003) Overview on SARS in Asia and the World. Respirology. https://doi.org/10.1046/j.1440-1843.2003.00516.x

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shi Y, Wang G, Cai X et al (2020) An overview of COVID-19. J Zhejiang Univ Sci B 21:343–360. https://doi.org/10.1631/jzus.B2000083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. DiMasi JA, Hansen RW, Grabowski HG (2003) The price of innovation: new estimates of drug development costs. J Health Econ 22:151–185. https://doi.org/10.1016/S0167-6296(02)00126-1

    Article  PubMed  Google Scholar 

  7. Dudley JT, Deshpande T, Butte AJ (2011) Exploiting drug-disease relationships for computational drug repositioning. Brief Bioinform 12:303–311. https://doi.org/10.1093/bib/bbr013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zou J, Zheng M-W, Li G, Su Z-G (2013) Advanced systems biology methods in drug discovery and translational biomedicine. Biomed Res Int 2013:1–8. https://doi.org/10.1155/2013/742835

    Article  Google Scholar 

  9. Ye H, Liu Q, Wei J (2014) Construction of drug network based on side effects and its application for drug repositioning. PLoS One 9:e87864. https://doi.org/10.1371/journal.pone.0087864

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  10. Dotolo S, Marabotti A, Facchiano A, Tagliaferri R (2021) A review on drug repurposing applicable to COVID-19. Brief Bioinform 22:726–741. https://doi.org/10.1093/bib/bbaa288

    Article  CAS  PubMed  Google Scholar 

  11. Xuan P, Cui H, Shen T et al (2019) HeteroDualNet: a dual convolutional neural network with heterogeneous layers for drug-disease association prediction via Chou’s five-step rule. Front Pharmacol 10:1301. https://doi.org/10.3389/fphar.2019.01301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang H-J, Huang Y-A, You Z-H (2019) Predicting drug-disease associations via using Gaussian interaction profile and kernel-based autoencoder. Biomed Res Int 2019:1–11. https://doi.org/10.1155/2019/2426958

    Article  CAS  Google Scholar 

  13. Wang Y, Deng G, Zeng N et al (2019) Drug-disease association prediction based on neighborhood information aggregation in neural networks. IEEE Access 7:50581–50587. https://doi.org/10.1109/ACCESS.2019.2907522

    Article  Google Scholar 

  14. Gottlieb A, Stein GY, Ruppin E, Sharan R (2011) PREDICT: a method for inferring novel drug indications with application to personalized medicine. Mol Syst Biol 7:496. https://doi.org/10.1038/msb.2011.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Perlman L, Gottlieb A, Atias N et al (2011) Combining drug and gene similarity measures for drug-target elucidation. J Comput Biol 18:133–145. https://doi.org/10.1089/cmb.2010.0213

    Article  CAS  PubMed  Google Scholar 

  16. Zeng X, Zhu S, Liu X et al (2019) deepDR: a network-based deep learning approach to in silico drug repositioning. Bioinformatics 35:5191–5198. https://doi.org/10.1093/bioinformatics/btz418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu Z, Huang F, Zhao X et al (2021) Predicting drug–disease associations through layer attention graph convolutional network. Brief Bioinform 22:bbaa243. https://doi.org/10.1093/bib/bbaa243

    Article  CAS  PubMed  Google Scholar 

  18. Su X, Hu L, You Z et al (2022) A deep learning method for repurposing antiviral drugs against new viruses via multi-view nonnegative matrix factorization and its application to SARS-CoV-2. Brief Bioinform 23:bbab526. https://doi.org/10.1093/bib/bbab526

    Article  CAS  PubMed  Google Scholar 

  19. Zhao B-W, You Z-H, Hu L et al (2021) A multi-graph deep learning model for predicting drug-disease associations. In: Huang D-S, Jo K-H, Li J et al (eds) Intelligent computing theories and application. Springer International Publishing, Cham, pp 580–590

    Chapter  Google Scholar 

  20. Barabási A-L, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68. https://doi.org/10.1038/nrg2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ata SK, Wu M, Fang Y et al (2021) Recent advances in network-based methods for disease gene prediction. Brief Bioinform 22:bbaa303. https://doi.org/10.1093/bib/bbaa303

    Article  CAS  PubMed  Google Scholar 

  22. Kim Y, Park J-H, Cho Y-R (2022) Network-based approaches for disease-gene association prediction using protein-protein interaction networks. IJMS 23:7411. https://doi.org/10.3390/ijms23137411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Martínez V, Navarro C, Cano C et al (2015) DrugNet: network-based drug–disease prioritization by integrating heterogeneous data. Artif Intell Med 63:41–49. https://doi.org/10.1016/j.artmed.2014.11.003

    Article  PubMed  Google Scholar 

  24. Wang W, Yang S, Zhang X, Li J (2014) Drug repositioning by integrating target information through a heterogeneous network model. Bioinformatics 30:2923–2930. https://doi.org/10.1093/bioinformatics/btu403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Luo H, Wang J, Li M et al (2016) Drug repositioning based on comprehensive similarity measures and Bi-Random walk algorithm. Bioinformatics 32:2664–2671. https://doi.org/10.1093/bioinformatics/btw228

    Article  CAS  PubMed  Google Scholar 

  26. Wu C, Gudivada RC, Aronow BJ, Jegga AG (2013) Computational drug repositioning through heterogeneous network clustering. BMC Syst Biol 7:S6. https://doi.org/10.1186/1752-0509-7-S5-S6

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang F, Ding Y, Lei X et al (2020) Identifying gene signatures for cancer drug repositioning based on sample clustering. IEEE/ACM Trans Comput Biol Bioinf. https://doi.org/10.1109/TCBB.2020.3019781

    Article  Google Scholar 

  28. March-Vila E, Pinzi L, Sturm N et al (2017) On the integration of in silico drug design methods for drug repurposing. Front Pharmacol 8:298. https://doi.org/10.3389/fphar.2017.00298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang W, Chen Y, Li D, Yue X (2018) Manifold regularized matrix factorization for drug-drug interaction prediction. J Biomed Inform 88:90–97. https://doi.org/10.1016/j.jbi.2018.11.005

    Article  PubMed  Google Scholar 

  30. Zhang W, Jing K, Huang F et al (2019) SFLLN: a sparse feature learning ensemble method with linear neighborhood regularization for predicting drug–drug interactions. Inf Sci 497:189–201. https://doi.org/10.1016/j.ins.2019.05.017

    Article  CAS  ADS  Google Scholar 

  31. Zhang W, Liu X, Chen Y et al (2018) Feature-derived graph regularized matrix factorization for predicting drug side effects. Neurocomputing 287:154–162. https://doi.org/10.1016/j.neucom.2018.01.085

    Article  Google Scholar 

  32. Chen X, Yan CC, Zhang X et al (2016) Drug–target interaction prediction: databases, web servers and computational models. Brief Bioinform 17:696–712. https://doi.org/10.1093/bib/bbv066

    Article  CAS  PubMed  Google Scholar 

  33. Zhang W, Yue X, Lin W et al (2018) Predicting drug-disease associations by using similarity constrained matrix factorization. BMC Bioinformatics 19:233. https://doi.org/10.1186/s12859-018-2220-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu X, Long H, Xi B et al (2019) Molecular network-based drug prediction in thyroid cancer. IJMS 20:263. https://doi.org/10.3390/ijms20020263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Guan N-N, Zhao Y, Wang C-C et al (2019) Anticancer drug response prediction in cell lines using weighted graph regularized matrix factorization. Mol Ther Nucleic Acids 17:164–174. https://doi.org/10.1016/j.omtn.2019.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhao Y, Chen X, Yin J (2018) A novel computational method for the identification of potential miRNA-disease association based on symmetric non-negative matrix factorization and Kronecker regularized least square. Front Genet 9:324. https://doi.org/10.3389/fgene.2018.00324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dai W, Liu X, Gao Y et al (2015) Matrix factorization-based prediction of novel drug indications by integrating genomic space. Comput Math Methods Med 2015:1–9. https://doi.org/10.1155/2015/275045

    Article  CAS  Google Scholar 

  38. Xuan P, Song Y, Zhang T, Jia L (2019) Prediction of potential drug-disease associations through deep integration of diversity and projections of various drug features. IJMS 20:4102. https://doi.org/10.3390/ijms20174102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang Y, Lei X, Pan Y, Wu F-X (2022) Drug repositioning with GraphSAGE and clustering constraints based on drug and disease networks. Front Pharmacol 13:872785. https://doi.org/10.3389/fphar.2022.872785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liang X, Zhang P, Yan L et al (2017) LRSSL: predict and interpret drug–disease associations based on data integration using sparse subspace learning. Bioinformatics 33:1187–1196. https://doi.org/10.1093/bioinformatics/btw770

    Article  CAS  PubMed  Google Scholar 

  41. Meng Y, Jin M, Tang X, Xu J (2021) Drug repositioning based on similarity constrained probabilistic matrix factorization: COVID-19 as a case study. Appl Soft Comput 103:107135. https://doi.org/10.1016/j.asoc.2021.107135

    Article  PubMed  PubMed Central  Google Scholar 

  42. Steinbeck C, Han Y, Kuhn S et al (2003) The chemistry development kit (CDK): an open-source java library for chemo- and bioinformatics. J Chem Inf Comput Sci 43:493–500. https://doi.org/10.1021/ci025584y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28:31–36. https://doi.org/10.1021/ci00057a005

    Article  CAS  Google Scholar 

  44. Tanimoto TT (1958) An elementary mathematical theory of classification and prediction. https://xueshu.baidu.com/usercenter/paper/show?paperid=5aade0fa71c478ae6f297921c4ca1dd8&site=xueshu_se&hitarticle=1

  45. Wang D, Wang J, Lu M et al (2010) Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics 26:1644–1650. https://doi.org/10.1093/bioinformatics/btq241

    Article  CAS  PubMed  Google Scholar 

  46. Yuan FN, Zhang L, Shi JT et al (2019) Review on theoretical and practical aspects of autoencoder neural networks. Chin J Comput (in Chinese) 42(1):28. https://xueshu.baidu.com/usercenter/paper/show?paperid=1g5c0es0ru6v00w0jr3n00j007257167&site=xueshu_se

  47. Fu H, Huang F, Liu X et al (2022) MVGCN: data integration through multi-view graph convolutional network for predicting links in biomedical bipartite networks. Bioinformatics 38:426–434. https://doi.org/10.1093/bioinformatics/btab651

    Article  CAS  PubMed  Google Scholar 

  48. Yang M, Luo H, Li Y, Wang J (2019) Drug repositioning based on bounded nuclear norm regularization. Bioinformatics 35:i455–i463. https://doi.org/10.1093/bioinformatics/btz331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang Z-C, Zhang X-F, Wu M et al (2020) A graph regularized generalized matrix factorization model for predicting links in biomedical bipartite networks. Bioinformatics 36:3474–3481. https://doi.org/10.1093/bioinformatics/btaa157

    Article  CAS  PubMed  Google Scholar 

  50. Lu L, Qin J, Chen J et al (2022) Recent computational drug repositioning strategies against SARS-CoV-2. Comput Struct Biotechnol J 20:5713–5728. https://doi.org/10.1016/j.csbj.2022.10.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ab Ghani NS, Emrizal R, Makmur H, Firdaus-Raih M (2020) Side chain similarity comparisons for integrated drug repositioning and potential toxicity assessments in epidemic response scenarios: the case for COVID-19. Comput Struct Biotechnol J 18:2931–2944. https://doi.org/10.1016/j.csbj.2020.10.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang Y, Zhang D, Du G et al (2020) Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. The Lancet 395:1569–1578. https://doi.org/10.1016/S0140-6736(20)31022-9

    Article  CAS  Google Scholar 

  53. Cao B, Wang Y, Wen D et al (2020) A trial of Lopinavir-Ritonavir in adults hospitalized with severe Covid-19. N Engl J Med 382:1787–1799. https://doi.org/10.1056/NEJMoa2001282

    Article  PubMed  Google Scholar 

  54. Rizk JG, Kalantar-Zadeh K, Mehra MR et al (2020) Pharmaco-immunomodulatory therapy in COVID-19. Drugs 80:1267–1292. https://doi.org/10.1007/s40265-020-01367-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rajendran K, Krishnasamy N, Rangarajan J et al (2020) Convalescent plasma transfusion for the treatment of COVID-19: systematic review. J Med Virol 92:1475–1483. https://doi.org/10.1002/jmv.25961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stone JH, Frigault MJ, Serling-Boyd NJ et al (2020) Efficacy of tocilizumab in patients hospitalized with Covid-19. N Engl J Med 383:2333–2344. https://doi.org/10.1056/NEJMoa2028836

    Article  CAS  PubMed  Google Scholar 

  57. Chow JH, Khanna AK, Kethireddy S et al (2021) Aspirin use is associated with decreased mechanical ventilation, intensive care unit admission, and in-hospital mortality in hospitalized patients with coronavirus disease 2019. Anesth Analg 132:930–941. https://doi.org/10.1213/ANE.0000000000005292

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (62272288, 61972451), the Shenzhen Science and Technology Program (KQTD20200820113106007), the Fundamental Research Funds for the Central Universities, Shaanxi Normal University (GK202302006), and the Hunan Provincial Natural Science Foundation of China (2023JJ30411).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiujuan Lei or Yi Pan.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, S., Lei, X., Chen, M. et al. Drug Repositioning Based on Deep Sparse Autoencoder and Drug–Disease Similarity. Interdiscip Sci Comput Life Sci 16, 160–175 (2024). https://doi.org/10.1007/s12539-023-00593-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-023-00593-9

Keywords

Navigation