Skip to main content
Log in

Modeling and Control of an Octopus Inspired Soft Arm under Prescribed Spatial Motion Constraints

  • Regular paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Precise control of soft robots remains challenging due to their highly compliant nature. Existing kinematic models may not enable accurate control performance as they do not account for actuation forces and dynamics. This paper tackles the problem of precise motion control for a soft robotic arm with longitudinal muscle actuators. We develop an integrated modeling and control framework that incorporates dynamics and actuation forces for improved accuracy. A key contribution is deriving and implementing a mathematical model of the soft muscle actuators using minimum norm optimization. Among, actuator saturation is addressed through a tension limiting function. Based on the whole model, we develop a dynamic surface controller with performance constraint to precisely control the soft arm. This controller makes soft robot subsequent interactions more secure. To assess the approach, numerical simulations and physical experiments are designed to verify the feasibility and rationality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cianchetti, M., Laschi, C., Menciassi, A., Dario, P.: Biomedical applications of soft robotics. Nat. Rev. Mater. 3(6), 143–153 (2018)

    Article  Google Scholar 

  2. Trebuňa, F., Virgala, I., Pástor, M., Lipták, T., Miková, L.: An inspection of pipe by snake robot. Int. J. Adv. Robot. Syst. 13(5), 1729881416663668 (2016)

    Article  Google Scholar 

  3. Branyan, C., Hatton, R.L., Mengücç, Y.: Snake-inspired kirigami skin for lateral undulation of a soft snake robot. IEEE Robot Autom Let 5(2), 1728–1733 (2020)

    Article  Google Scholar 

  4. Gul, J.Z., Sajid, M., Rehman, M.M., Siddiqui, G.U., Shah, I., Kim, K.-H., Lee, J.-W., Choi, K.H.: 3D printing for soft robotics –A review. Sci Technol Adv Mat 19(1), 243–262 (2018)

  5. Yang, Y., Liu, Z., Li, Q., He, W.: Overview of actuators, modeling, and control methods for soft manipulators. Chin J Eng 44(12), 2124–2137 (2022)

    Google Scholar 

  6. Liu, S., Yang, Z., Zhu, Z.: Development of a dexterous continuum manipulator for exploration and inspection in confined spaces. Ind. Robot. 43(3), 284–295 (2016)

    Article  Google Scholar 

  7. Chikhaoui, M.T., Rabenorosoa, K., Andreff, N.: Kinematics and performance analysis of a novel concentric tube robotic structure with embedded soft micro-actuation. Mech. Mach. Theory 104, 234–254 (2016)

    Article  Google Scholar 

  8. Murphy, R.R.: Disaster Robotics. MIT Press, London, Cambridge (2014)

    Book  Google Scholar 

  9. Omisore, O.M., Han, S., Ren, L., Zhao, Z., Al-Handarish, Y., Igbe, T., Wang, L.: A teleoperated snake-like robot for minimally invasive radiosurgery of gastrointestinal tumors. In: 2018 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 123–129 (2018)

  10. Li, J., Chang, W., Li, Q.: Soft robot with a novel variable friction design actuated by SMA and electromagnet. Smart Mater. Struct. 27(11), 115020 (2018)

    Article  Google Scholar 

  11. Benouhiba, A., Rabenorosoa, K., Rougeot, P., Ouisse, M., Andreff, N.: A multisegment electro-active polymer based milli-continuum soft robots. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 7500–7506 (2018)

  12. Chen, Y., Chung, H., Chen, B.: Baoyinjiya: a lobster-inspired articulated shaft for minimally invasive surgery. Robot. Auton. Syst. 131, 1039599 (2020)

  13. Tawk, C., Gillett, A., Panhuis, M., Spinks, G.M., Alici, G.: A 3D-printed omni-purpose soft gripper. IEEE T Robot 35(5), 1268–1275 (2019)

    Article  Google Scholar 

  14. Renda, F., Boyer, F., Dias, J., Seneviratne, L.: Discrete cosserat approach for multisection soft manipulator dynamics. IEEE T Robot 34(6), 1518–1533 (2018)

    Article  Google Scholar 

  15. Yang, Y., Han, J., Liu, Z., Zhao, Z., Hong, K.-S.: Modeling and adaptive neural network control for a soft robotic arm with prescribed motion constraints. IEEE-Caa J Automatic 10(2), 501–511 (2023)

    Article  Google Scholar 

  16. Ma, J., Han, Z., Yang, L., Min, G., Liu, Z., He, W.: Dynamics modeling of a soft arm under the cosserat theory. In: 2021 IEEE International Conference on Real-time Computing and Robotics (RCAR), pp. 87–90 (2021)

  17. Laschi, C., Cianchetti, M., Mazzolai, B., Margheri, L., Follador, M., Dario, P.: Soft robot arm inspired by the octopus. Adv Robotics 26(7), 709–727 (2012)

    Article  Google Scholar 

  18. George Thuruthel, T., Ansari, Y., Falotico, E., Laschi, C.: Control strategies for soft robotic manipulators: a survey. Soft Robot 5(2), 149–163 (2018)

    Article  Google Scholar 

  19. Santinacosimo, D., Katzschmannrobert, K.: BicchiAntonio, RusDaniela: Model-based dynamic feedback control of a planar soft robot. Int. J. Robot. Res. 39(4), 490–513 (2020)

    Article  Google Scholar 

  20. Della Santina, C., Truby, R.L., Rus, D.: Data–driven disturbance observers for estimating external forces on soft robots. IEEE Robot Autom Let 5(4), 5717–5724 (2020)

  21. Li, H., Xun, L., Zheng, G., Renda, F.: Discrete cosserat static model-based control of soft manipulator. IEEE Robot Autom Let 8(3), 1739–1746 (2023)

    Article  Google Scholar 

  22. Briot, S., Boyer, F.: A geometrically exact assumed strain modes approach for the geometrico-and kinemato-static modelings of continuum parallel robots. IEEE T Robot 39(2), 1527–1543 (2022)

    Article  Google Scholar 

  23. Moon, D.-H., Shin, S.-H., Na, J.-B., Han, S.-Y.: Fluid–structure interaction based on meshless local petrov–galerkin method for worm soft robot analysis. Int J Pr Eng Man-Gt 7, 727–742 (2020)

  24. Vanneste, F., Goury, O., Martínez, J., Lefebvre, S., Delingette, H., Duriez, C.: Anisotropic soft robots based on 3d printed meso-structured materials: design, modeling by homogenization and simulation. IEEE Robot Autom Let 5(2), 2380–2386 (2020)

    Article  Google Scholar 

  25. Renda, F., Cianchetti, M., Giorelli, M., Arienti, A., Laschi, C.: A 3d steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm. Bioinspir. Biomim. 7(2), 025006 (2012)

    Article  Google Scholar 

  26. George Thuruthel, T., Renda, F., Iida, F.: First-order dynamic modeling and control of soft robots. Front Robot Ai 7(95), 1–14 (2020)

    Google Scholar 

  27. Boyer, F., Lebastard, V., Candelier, F., Renda, F.: Dynamics of continuum and soft robots: a strain parameterization based approach. IEEE T Robot 37(3), 847–863 (2020)

    Article  Google Scholar 

  28. Li, H., Xun, L., Zheng, G.: Piecewise linear strain cosserat model for soft slender manipulator. IEEE T Robot 39(3), 2342–2359 (2023)

    Article  Google Scholar 

  29. Xu, F., Wang, H., Wang, J., Au, K.W.S., Chen, W.: Underwater dynamic visual servoing for a soft robot arm with online distortion correction. IEEE-Asme T Mech 24(3), 979–989 (2019)

    Article  Google Scholar 

  30. Gerboni, G., Diodato, A., Ciuti, G., Cianchetti, M., Menciassi, A.: Feedback control of soft robot actuators via commercial flex bend sensors. IEEE-Asme T Mech 22(4), 1881–1888 (2017)

    Article  Google Scholar 

  31. Vikas, V., Grover, P., Trimmer, B.: Model-free control framework for multi-limb soft robots. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1111–1116 (2015)

  32. Vikas, V., Cohen, E., Grassi, R., Szer, C., Trimmer, B.: Design and locomotion control of soft robot using friction manipulation and motor-tendon actuation. IEEE T Robot 32(4), 949–959 (2016)

    Article  Google Scholar 

  33. Yip, M.C., Camarillo, D.B.: Model-less feedback control of continuum manipulators in constrained environments. IEEE T Robot 30(4), 880–888 (2014)

    Article  Google Scholar 

  34. Wang, H., Ni, H., Wang, J., Chen, W.: Hybrid vision/force control of soft robot based on a deformation model. IEEE T Contr Syst T 29(2), 661–671 (2021)

    Article  Google Scholar 

  35. Mahvash, M., Dupont, P.E.: Stiffness control of surgical continuum manipulators. IEEE T Robot 27(2), 334–345 (2011)

    Article  Google Scholar 

  36. Guo, X., Yan, W., Cui, R., Rout, R., Zhang, S.: Self-triggered adaptive nn tracking control for a class of continuous-time nonlinear systems with input constraints. IEEE T Syst Man Cy-S 52(9), 5805–5815 (2021)

    Article  Google Scholar 

  37. Ma, F., Yan, W., Chen, L., Cui, R.: Cpg-based motion planning of hybrid underwater hexapod robot for wall climbing and transition. IEEE Robot Autom Let 7(4), 12299–12306 (2022)

    Article  Google Scholar 

  38. Kong, L.-H., He, W., Chen, W.-S., Zhang, H., Wang, Y.-N.: Dynamic movement primitives based robot skills learning. Mach Intell Res 20(3), 396–407 (2023)

    Article  Google Scholar 

  39. Qiao, H., Zhong, S., Chen, Z., Wang, H.: Improving performance of robots using human-inspired approaches: a survey. Sci China Inf Sci 65(12), 221201 (2022)

    Article  Google Scholar 

  40. Qiao, H., Wu, Y.-X., Zhong, S.-L., Yin, P.-J., Chen, J.-H.: Brain-inspired intelligent robotics: theoretical analysis and systematic application. Mach Intell Res 20(1), 1–18 (2023)

    Article  Google Scholar 

  41. Liu, Z., Lu, Z., Zhao, Z., Efe, M.Ö., Hong, K.-S.: Single parameter adaptive neural network control for multi-agent deployment with prescribed tracking performance. Automatica 156, 111207 (2023)

    Article  MathSciNet  Google Scholar 

  42. Xie, Z., Domel, A.G., An, N., Green, C., Gong, Z., Wang, T., Knubben, E.M., Weaver, J.C., Bertoldi, K., Wen, L.: Octopus arm-inspired tapered soft actuators with suckers for improved grasping. Soft Robot 7(5), 639–648 (2020)

  43. Greco, G., Bosia, F., Tramacere, F., Mazzolai, B., Pugno, N.M.: The role of hairs in the adhesion of octopus suckers: a hierarchical peeling approach. Bioinspir. Biomim. 15(3), 035006 (2020)

  44. Zhang, X., Fan, C., Parthasarathy, T., Gazzola, M.: Modeling and simulation of complex dynamic musculoskeletal architectures. Nat. Commun. 10(4825), 4825 (2019)

  45. Walker, M.W., Orin, D.E.: Efficient dynamic computer simulation of robotic mechanisms. J Dyn Syst-Tasme 104, 205–211 (1982)

  46. Rucker, D.C., Webster Iii, R.J.: Statics and dynamics of continuum robots with general tendon routing and external loading. IEEE T Robot 27(6), 1033–1044 (2011)

    Article  Google Scholar 

  47. Renda, F., Armanini, C., Lebastard, V., Candelier, F., Boyer, F.: A geometric variable strain approach for static modeling of soft manipulators with tendon and fluidic actuation. IEEE Robot Autom Let 5(3), 4006–4013 (2020)

    Article  Google Scholar 

  48. Song, Y.D., Zhou, S.: Tracking control of uncertain nonlinear systems with deferred asymmetric time-varying full state constraints. Automatica 98, 314–322 (2018)

    Article  MathSciNet  Google Scholar 

  49. Zhou, J., Wen, C., Zhou, J., Wen, C.: Adaptive Backstepping Control of Uncertain Systems: Nonsmooth Nonlinearities. Interactionsor Time-variations. Springer, Berlin Heidelberg (2008)

    Google Scholar 

  50. Tee, K.P., Ge, S.S., Tay, E.H.: Barrier lyapunov functions for the control of output- constrained nonlinear systems. Automatica 46(4), 449–455 (2013)

    Google Scholar 

  51. Fuentes-Aguilar, R.Q., Chairez, I.: Adaptive tracking control of state constraint systems based on differential neural networks: a barrier lyapunov function approach. IEEE T Neur Net Lear 31(12), 5390–5401 (2020)

    MathSciNet  Google Scholar 

  52. Ma, J., Zheng, Z., Li, P.: Adaptive dynamic surface control of a class of nonlinear systems with unknown direction control gains and input saturation. IEEE T Cybernetics 45(4), 728–741 (2017)

    Article  Google Scholar 

  53. Han, Z., Liu, Z., He, W., Li, G.: Distributed parameter modeling and boundary control of an octopus tentacle-inspired soft robot. IEEE T Contr Syst T 30(3), 1244–1256 (2022)

    Article  Google Scholar 

  54. Kong, L., He, W., Liu, Z., Yu, X., Silvestre, C.: Adaptive tracking control with global performance for output-constrained mimo nonlinear systems. IEEE T Automat Contr 68(6), 3760–3767 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the National Natural Science Foundation of China (62073030) and is partially supported by the Ministry of Education, Singapore, under its Research Centre of Excellence award to the Institute for Functional Intelligent Materials (I-FIM, project No. EDUNC-33-18-279-V12)

Funding

This work is funded by the National Natural Science Foundation of China (62073030) and is partially supported by the Ministry of Education, Singapore, under its Research Centre of Excellence award to the Institute for Functional Intelligent Materials (I-FIM, project No. EDUNC-33-18-279-V12)

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by Jie Ma and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wei He.

Ethics declarations

Conflict of interest/Competing interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The rotation matrix R is converted into a unit quaternion Q, which can be described by the following formula:

$$\begin{aligned} R_{0}=\left[ \begin{array}{ccc} r_{11} &{} r_{12} &{} r_{13} \\ r_{21} &{} r_{22} &{} r_{23} \\ r_{31} &{} r_{32} &{} r_{33} \end{array}\right] \Rightarrow \left\{ \begin{array}{l} q_{1}=\frac{\sqrt{1+r_{11}+r_{22}+r_{33}}}{2} \\ q_{2}=\frac{r_{32}-r_{23}}{4 q_{1}} \\ q_{3}=\frac{r_{13}-r_{31}}{4 q_{1}} \\ q_{4}=\frac{r_{21}-r_{12}}{4 q_{1}} \end{array}\right. \end{aligned}$$
(1)

However, Eq. A1 must meet \(q_1\ne 0,r_{11}+r_{22}+r_{33}+1>0\), briefly, \(1+tr(R)>0\). If \(q_1=0,tr(R)=-1\), then, we need to discuss \(\max \{r_{11},r_{22},r_{33}\}\) when converting to quaternion. The form of \(q_2,q_3,q_4\) is determined by the value in \(r_{11},r_{22},r_{33}\). In addition, C(Q) represents the process of converting a unit quaternion into a coordinate rotation matrix. It can be written as \(C(Q)=\)

$$\begin{aligned} \begin{aligned} \begin{bmatrix} q_{1}^{2}\!-\!q_{2}^{2}\!-\!q_{3}^{2}\!+\!q_{4}^{2} &{} 2 \left( q_{1} q_{2}\!+\!q_{3} q_{4}\right) &{} \!2\left( q_{1} q_{3}\!-\!q_{2} q_{4}\right) \\ 2\left( q_{1} q_{2}\!-\!q_{3} q_{4}\right) &{} \!-q_{1}^{2}\!+\!q_{2}^{2}\!-\!q_{3}^{2}\!+\!q_{4}^{2} &{} 2\left( q_{2} q_{3}\!+\!q_{1} q_{4}\right) \\ 2\left( q_{1} q_{3}\!+\!q_{2} q_{4}\right) &{} \!2\left( q_{2} q_{3}\!-\!q_{1} q_{4}\right) &{} \!-\!q_{1}^{2}-q_{2}^{2}\!+\!q_{3}^{2}\!+\!q_{4}^{2} \end{bmatrix} \end{aligned} \end{aligned}$$
(2)

For operator \(A(\cdot )\), it can be expressed as

\(A(\lambda )=\left( \begin{array}{cccc}0 &{} -\lambda _{1} &{} -\lambda _{2} &{} -\lambda _{3} \\ \lambda _{1} &{} 0 &{} -\lambda _{3} &{} \lambda _{2} \\ \lambda _{2} &{} \lambda _{3} &{} 0 &{} -\lambda _{1} \\ \lambda _{3} &{} -\lambda _{2} &{} \lambda _{1} &{} 0\end{array}\right) \). where \(\lambda \in \mathbb {R}^3\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Han, Z., Liu, Z. et al. Modeling and Control of an Octopus Inspired Soft Arm under Prescribed Spatial Motion Constraints. J Intell Robot Syst 109, 94 (2023). https://doi.org/10.1007/s10846-023-02026-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-023-02026-7

Keywords

Navigation