Skip to main content
Log in

Microstructurally-informed stochastic inhomogeneity of material properties and material symmetries in 3D-printed 316 L stainless steel

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Stochastic mesoscale inhomogeneity of material properties and material symmetries are investigated in a 3D-printed material. The analysis involves a spatially-dependent characterization of the microstructure in 316 L stainless steel, obtained through electron backscatter diffraction imaging. These data are subsequently fed into a Voigt–Reuss–Hill homogenization approximation to produce maps of elasticity tensor coefficients along the path of experimental probing. Information-theoretic stochastic models corresponding to this stiffness random field are then introduced. The case of orthotropic fields is first defined as a high-fidelity model, the realizations of which are consistent with the elasticity maps. To investigate the role of material symmetries, an isotropic approximation is next introduced through ad-hoc projections (using various metrics). Both stochastic representations are identified using the dataset. In particular, the correlation length along the characterization path is identified using a maximum likelihood estimator. Uncertainty propagation is finally performed on a complex geometry, using a Monte Carlo analysis. It is shown that mechanical predictions in the linear elastic regime are mostly sensitive to material symmetry but weakly depend on the spatial correlation length in the considered propagation scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Alsalla HH, Smith C, Hao L (2018) Effect of build orientation on the surface quality, microstructure and mechanical properties of selective laser melting 316l stainless steel. Rapid Prototyp J 24(1):9–17

    Article  Google Scholar 

  2. Mohammed HG, Ginta TL, Mustapha M (2021) The investigation of microstructure and mechanical properties of resistance spot welded AISI 316l austenitic stainless steel. Mater Today Proc 46:1640–1644

    Article  Google Scholar 

  3. Yadroitsev I, Bertrand P, Smurov I (2007) Parametric analysis of the selective laser melting process. Appl Surf Sci 253(19):8064–8069

    Article  Google Scholar 

  4. Sinha S, Szpunar JA, Kumar NK, Gurao N (2015) Tensile deformation of 316l austenitic stainless steel using in-situ electron backscatter diffraction and crystal plasticity simulations. Mater Sci Eng, A 637:48–55

    Article  Google Scholar 

  5. Jayalakshmi M, Huilgol P, Bhat BR, Bhat KU (2016) Microstructural characterization of low temperature plasma-nitrided 316l stainless steel surface with prior severe shot peening. Mater Des 108:448–454

    Article  Google Scholar 

  6. Rodrigues TA, Escobar J, Shen J, Duarte VR, Ribamar G, Avila JA, Maawad E, Schell N, Santos TG, Oliveira J (2021) Effect of heat treatments on 316 stainless steel parts fabricated by wire and arc additive manufacturing: Microstructure and synchrotron x-ray diffraction analysis. Addit Manuf 48:102428

    Google Scholar 

  7. Magarò P, Alaimo G, Carraturo M, Sgambitterra E, Maletta C (2023) A novel methodology for the prediction of the stress-strain response of laser powder bed fusion lattice structure based on a multi-scale approach. Mater Sci Eng, A 863:144526. https://doi.org/10.1016/j.msea.2022.144526

    Article  Google Scholar 

  8. Hengsbach F, Koppa P, Holzweissig MJ, Aydinöz ME, Taube A, Hoyer K-P, Starykov O, Tonn B, Niendorf T, Tröster T et al (2018) Inline additively manufactured functionally graded multi-materials: microstructural and mechanical characterization of 316l parts with h13 layers. Progress Addit Manuf 3:221–231

    Article  Google Scholar 

  9. Röttger A, Boes J, Theisen W, Thiele M, Esen C, Edelmann A, Hellmann R (2020) Microstructure and mechanical properties of 316l austenitic stainless steel processed by different SLM devices. Int J Adv Manuf Technol 108:769–783

    Article  Google Scholar 

  10. Jiang D, Ning F (2022) Anisotropic deformation of 316l stainless steel overhang structures built by material extrusion based additive manufacturing. Addit Manuf 50:102545

    Google Scholar 

  11. Riemer A, Leuders S, Thöne M, Richard H, Tröster T, Niendorf T (2014) On the fatigue crack growth behavior in 316l stainless steel manufactured by selective laser melting. Eng Fract Mech 120:15–25

    Article  Google Scholar 

  12. Liverani E, Toschi S, Ceschini L, Fortunato A (2017) Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316l austenitic stainless steel. J Mater Process Technol 249:255–263

    Article  Google Scholar 

  13. Kamariah M, Harun W, Khalil N, Ahmad F, Ismail M, Sharif S (2017) Effect of heat treatment on mechanical properties and microstructure of selective laser melting 316l stainless steel. In: IOP conference series: materials science and engineering, vol. 257, p 012021. IOP Publishing

  14. Iliopoulos A, Thomas J, Steuben J, Saunders R, Michopoulos J, Bagchi A, Birnbaum A (2020) Statistical analysis of tensile tests performed on 316l specimens manufactured by directed energy deposition. In: International design engineering technical conferences and computers and information in engineering conference, vol 83983, pp 009–09024. American Society of Mechanical Engineers

  15. Güden M, Yavas H, Tanrikulu AA, Tasdemirci A, Akin B, Enser S, Karakus A, Hamat BA (2021) Orientation dependent tensile properties of a selective-laser-melt 316l stainless steel. Mater Sci Eng, A 824:141808. https://doi.org/10.1016/j.msea.2021.141808

    Article  Google Scholar 

  16. Mahadevan S, Nath P, Hu Z (2021) Uncertainty quantification for additive manufacturing process improvement: recent advances. ASCE-ASME J Risk Uncert Engrg Sys Part B Mech Engrg 8(1)

  17. Maleki E, Bagherifard S, Sabouri F, Guagliano M (2021) Effects of hybrid post-treatments on fatigue behaviour of notched LPBF alsi10mg: Experimental and deep learning approaches. Proc Struct Integr 34:141–153

    Google Scholar 

  18. Ren K, Chew Y, Liu N, Zhang Y, Fuh J, Bi G (2021) Integrated numerical modelling and deep learning for multi-layer cube deposition planning in laser aided additive manufacturing. Virtual Phys Prototyp 16(3):318–332

    Article  Google Scholar 

  19. Mamedipaka R, Thapliyal S (2023) Data-driven model for predicting tensile properties of wire arc additive manufactured 316l steels and its validation. J Mater Eng Perform, pp 1–9

  20. Maloth T, Ozturk D, Hommer GM, Pilchak AL, Stebner AP, Ghosh S (2020) Multiscale modeling of cruciform dwell tests with the uncertainty-quantified parametrically homogenized constitutive model. Acta Mater 200:893–907

    Article  Google Scholar 

  21. Kotha S, Ozturk D, Smarslok B, Ghosh S (2020) Uncertainty quantified parametrically homogenized constitutive models for microstructure-integrated structural simulations. Integrat Mater Manufact Innov 9(4):322–338

    Article  Google Scholar 

  22. Ozturk D, Kotha S, Ghosh S (2021) An uncertainty quantification framework for multiscale parametrically homogenized constitutive models (PHCMS) of polycrystalline ti alloys. J Mech Phys Solids 148:104294

    Article  Google Scholar 

  23. Weber G, Pinz M, Ghosh S (2022) Machine learning-enabled self-consistent parametrically-upscaled crystal plasticity model for ni-based superalloys. Comput Methods Appl Mech Eng 115384

  24. Pinz M, Storck S, Montalbano T, Croom B, Salahudin N, Trexler M, Ghosh S (2022) Efficient computational framework for image-based micromechanical analysis of additively manufactured TI-6AL-4V alloy. Addit Manuf 60:103269

    Google Scholar 

  25. Senthilnathan A, Javaheri I, Sundararaghavan V, Acar P (2023) Computational characterization and model verification for 3d microstructure reconstruction of additively manufactured materials. In: AIAA SCITECH 2023 forum

  26. Korshunova N, Alaimo G, Hosseini SB, Carraturo M, Reali A, Niiranen J, Auricchio F, Rank E, Kollmannsberger S (2021) Image-based numerical characterization and experimental validation of tensile behavior of octet-truss lattice structures. Addit Manufact 41:101949. https://doi.org/10.1016/j.addma.2021.101949

    Article  Google Scholar 

  27. Zhao K, Wang B, Xue H, Wang Z (2022) Effect of material inhomogeneity on the crack tip mechanical field and SCC growth rate of 52m/316l dissimilar metal welded joints. Metals 12(10):1683

    Article  Google Scholar 

  28. Benito S, Egels G, Hartmaier A, Weber S (2023) Statistical characterization of segregation-driven inhomogeneities in metallic microstructures employing fast first-order variograms. Mater Today Commun 34:105016

    Article  Google Scholar 

  29. Chu S, Guilleminot J, Kelly C, Abar B, Gall K (2021) Stochastic modeling and identification of material parameters on structures produced by additive manufacturing. Comput Methods Appl Mech Eng 387:114166

    Article  MathSciNet  Google Scholar 

  30. Ghanem R, Higdon D, Owhadi H (2017) Handbook of uncertainty quantification. Springer

  31. Le Maître O, Knio O (2010) Spectral methods for uncertainty quantification: with applications to computational fluid dynamics. Springer

  32. Andreau O, Koutiri I, Peyre P, Penot J-D, Saintier N, Pessard E, De Terris T, Dupuy C, Baudin T (2019) Texture control of 316l parts by modulation of the melt pool morphology in selective laser melting. J Mater Process Technol 264:21–31. https://doi.org/10.1016/j.jmatprotec.2018.08.049

    Article  Google Scholar 

  33. Iliopoulos A, Michopoulos JG, Birnbaum A, Steuben JC, Stewart C, Rowenhorst D (2020) Structural performance modeling of additively manufactured parts under process-induced inhomogeneity and property anisotropy. ASTM ICAM virtual conference

  34. Ledbetter HM (1981) Elastic constants of polycrystalline copper at low temperatures. Relationship to single-crystal elastic constants. Physica Status Solid 66(2):477–484

    Article  Google Scholar 

  35. Ostoja-Starzewski M (2008) Microstructural randomness and scaling in mechanics of materials. Chapman and Hall/CRC/Taylor and Francis

  36. Villalobos-Portillo EE, Fuentes-Montero L, Montero-Cabrera ME, Burciaga-Valencia DC, Fuentes-Cobas LE (2019) Polycrystal piezoelectricity: revisiting the Voigt–Reuss–Hill approximation. Mater Res Express 6(11):115705. https://doi.org/10.1088/2053-1591/ab46f2

    Article  Google Scholar 

  37. Norris AN (2006) Elastic moduli approximation of higher symmetry for the acoustical properties of an anisotropic material. J Acoust Soc Am 119(4):2114–2121

    Article  Google Scholar 

  38. Arsigny V, Fillard P, Pennec X, Ayache N (2006) Log-euclidean metrics for fast and simple calculus on diffusion tensors. Magn Reson Med 56:411–421

    Article  Google Scholar 

  39. Moakher M, Norris AN (2006) The closest elastic tensor of arbitrary symmetry to an elasticity tensor of lower symmetry. J Elast 85:215–263

    Article  MathSciNet  Google Scholar 

  40. Soize C (2006) Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators. Comput Methods Appl Mech Eng 195(1):26–64. https://doi.org/10.1016/j.cma.2004.12.014

    Article  MathSciNet  Google Scholar 

  41. Staber B, Guilleminot J (2017) Stochastic modeling and generation of random fields of elasticity tensors: a unified information-theoretic approach. Comptes Rendus Mécanique 345(6):399–416. https://doi.org/10.1016/j.crme.2017.05.001

    Article  Google Scholar 

  42. Guilleminot J (2020) 12–modeling non-Gaussian random fields of material properties in multiscale mechanics of materials. In: Wang Y, McDowell DL (eds) Uncertainty quantification in multiscale materials modeling. Elsevier Series in Mechanics of Advanced Materials, pp 385–420. Woodhead Publishing

  43. Das S, Ghanem R (2009) A bounded random matrix approach for stochastic upscaling. Multiscale Model Simul 8(1):296–325

    Article  MathSciNet  Google Scholar 

  44. Guilleminot J, Soize C (2013) On the statistical dependence for the components of random elasticity tensors exhibiting material symmetry properties. J Elast 111(2):109–130. https://doi.org/10.1007/s10659-012-9396-z

    Article  MathSciNet  Google Scholar 

  45. Guilleminot J, Soize C (2013) Stochastic model and generator for random fields with symmetry properties: application to the mesoscopic modeling of elastic random media. Multiscale Model Simul 11(3):840–870

    Article  MathSciNet  Google Scholar 

  46. Guilleminot J, Soize C (2014) Itô SDE-based generator for a class of non-Gaussian vector-valued random fields in uncertainty quantification. SIAM J Sci Comput 36(6):2763–2786

    Article  MathSciNet  Google Scholar 

  47. Baxter SC, Acton KA (2019) Simulations of non-Gaussian property fields based on the apparent properties of statistical volume elements. ASCE-ASME J Risk Uncert Engrg Sys Part B Mech Engrg 5(3):030906

    Article  Google Scholar 

  48. Grigoriu M (2016) Microstructure models and material response by extreme value theory. SIAM/ASA J Uncertain Quantif 4(1):190–217

    Article  MathSciNet  Google Scholar 

  49. Shivanand SK, Rosić B, Matthies HG (2021) Stochastic modelling of symmetric positive-definite material tensors

  50. Malyarenko A, Ostoja-Starzewski M (2017) A random field formulation of Hooke’s law in all elasticity classes. J Elast 127(2):269–302. https://doi.org/10.1007/s10659-016-9613-2

    Article  MathSciNet  Google Scholar 

  51. Malyarenko A, Ostoja-Starzewski M (2020) Tensor random fields in continuum mechanics, pp 2433–2441. Springer, Berlin

  52. Malyarenko A, Ostoja-Starzewski M (2016) Spectral expansion of three-dimensional elasticity tensor random fields. In: Silvestrov S, Rančić M (eds) Engineering mathematics I. Springer, Cham, pp 281–300

    Chapter  Google Scholar 

  53. Malyarenko A, Ostoja-Starzewski M (2023) Tensor- and spinor-valued random fields with applications to continuum physics and cosmology. Probab Surv 20:1–86

    Article  MathSciNet  Google Scholar 

  54. Walpole L (1984) Fourth-rank tensors on the thirty-two crystal classes: multiplication tables. Proc R Soc Lond A 391:149–179. https://doi.org/10.1098/rspa.1984.0008

    Article  MathSciNet  Google Scholar 

  55. Grigoriu M (1984) Crossings of non-gaussian translation processes. J Eng Mech 110(4):610–620

    Article  Google Scholar 

  56. Lindgren F, Rue H, Lindström J (2011) An explicit link between gaussian fields and gaussian markov random fields: the stochastic partial differential equation approach. J R Stat Soc Ser B 73(4):423–498. https://doi.org/10.1111/j.1467-9868.2011.00777.x

    Article  MathSciNet  Google Scholar 

  57. Lindgren F, Bolin D, Rue H (2022) The SPDE approach for gaussian and non-gaussian fields: 10 years and still running. Spatial Stat 50:100599. https://doi.org/10.1016/j.spasta.2022.100599

    Article  MathSciNet  Google Scholar 

  58. Whittle P (1954) On stationary processes in the plane. Biometrika 41(3–4):434–449. https://doi.org/10.1093/biomet/41.3-4.434

    Article  MathSciNet  Google Scholar 

  59. Whittle P (1963) Stochastic processes in several dimensions. Bull Int Stat Inst 40:974–994

    MathSciNet  Google Scholar 

  60. Fuglstad G-A, Lindgren F, Simpson D, Rue H (2015) Exploring a new class of nonstationary spatial Gaussian random fields with varying local anisotropy. Stat Sin 25(1):115–133. https://doi.org/10.5705/ss.2013.106w

    Article  Google Scholar 

  61. Roininen L, Huttunen JMJ, Lasanen S (2014) Whittle-Matérn priors for bayesian statistical inversion with applications in electrical impedance tomography. Inverse Probl Imaging 8(2):561–586. https://doi.org/10.3934/ipi.2014.8.561

    Article  MathSciNet  Google Scholar 

  62. Dunlop MM, Stuart AM (2016) The Bayesian formulation of EIT: analysis and algorithms. Inverse Probl Imaging 10(4):1007–1036. https://doi.org/10.3934/ipi.2016030

    Article  MathSciNet  Google Scholar 

  63. Sidén P, Eklund A, Bolin D, Villani M (2017) Fast Bayesian whole-brain FMRI analysis with spatial 3d priors. NeuroImage 146:211–225. https://doi.org/10.1016/j.neuroimage.2016.11.040

    Article  Google Scholar 

  64. Roininen L, Girolami M, Lasanen S, Markkanen M (2019) Hyperpriors for Matérn fields with applications in Bayesian inversion. Inverse Probl Imaging 13(1):1–29. https://doi.org/10.3934/ipi.2019001

    Article  MathSciNet  Google Scholar 

  65. Sidén P, Lindgren F, Bolin D, Eklund A, Villani M (2019) Spatial 3d Matérn priors for fast whole-brain FMRI analysis. arXiv:1906.10591

  66. Mejia AF, Yue YR, Bolin D, Lindgren F, Lindquist MA (2020) A Bayesian general linear modeling approach to cortical surface FMRI data analysis. J Am Stat Assoc 115(530):501–520. https://doi.org/10.1080/01621459.2019.1611582

    Article  MathSciNet  Google Scholar 

  67. Bolin D, Lindgren F (2011) Spatial models generated by nested stochastic partial differential equations, with an application to global ozone mapping. Ann Appl Stat 5(1):523–550. https://doi.org/10.1214/10-AOAS383

    Article  MathSciNet  Google Scholar 

  68. Guilleminot J, Asadpoure A, Tootkaboni M (2019) Topology optimization under topologically dependent material uncertainties. Struct Multidiscip Optim 60:1283–1287. https://doi.org/10.1007/s00158-019-02247-1

  69. Staber B, Guilleminot J (2018) A random field model for anisotropic strain energy functions and its application for uncertainty quantification in vascular mechanics. Computer Methods Appl Mech Eng 333:94–113. https://doi.org/10.1016/j.cma.2018.01.001

  70. Chu S, Guilleminot J (2019) Stochastic multiscale modeling with random fields of material properties defined on nonconvex domains. Mech Res Commun 97:39–45

    Article  Google Scholar 

  71. Bolin D, Kirchner K (2020) The rational SPDE approach for Gaussian random fields with general smoothness. J Comput Graph Stat 29(2):274–285. https://doi.org/10.1080/10618600.2019.1665537

    Article  MathSciNet  Google Scholar 

  72. Bolin D, Wallin J (2020) Multivariate type g Matérn stochastic partial differential equation random fields. J R Stat Soc Ser B Stat Methodol 82(1):215–239. https://doi.org/10.1111/rssb.12351

    Article  MathSciNet  Google Scholar 

  73. Daon Y, Stadler G (2018) Mitigating the influence of the boundary on PDE-based covariance operators. Inverse Probl Imaging 12(5):1083–1102. https://doi.org/10.3934/ipi.2018045

  74. Khristenko U, Scarabosio L, Swierczynski P, Ullmann E, Wohlmuth B (2019) Analysis of boundary effects on PDE-based sampling of Whittle-Matérn random fields. SIAM/ASA J Uncert Quant 7(3):948–974. https://doi.org/10.1137/18M1215700

  75. Jaynes E (1957) Information theory and statistical mechanics i. Phys Rev 106(4):620–630. https://doi.org/10.1103/PhysRev.106.620

    Article  MathSciNet  Google Scholar 

  76. Jaynes E (1957) Information theory and stastitical mechanics ii. Phys Rev 108(2):171–190. https://doi.org/10.1103/PhysRev.108.171

    Article  MathSciNet  Google Scholar 

  77. Hun D-A, Guilleminot J, Yvonnet J, Bornert M (2019) Stochastic multiscale modeling of crack propagation in random heterogeneous media. Int J Numer Meth Eng 119(13):1325–1344

    Article  MathSciNet  Google Scholar 

  78. Soize C (2000) A nonparametric model of random uncertainties for reduced matrix models in structural dynamics. Probab Eng Mech 15(3):277–294

    Article  Google Scholar 

  79. Tran V, Guilleminot J, Brisard S, Sab K (2016) Stochastic modeling of mesoscopic elasticity random field. Mech Mater 93:1–12. https://doi.org/10.1016/j.mechmat.2015.10.007

Download references

Acknowledgements

The work of S.C. was supported by the National Science Foundation, Division of Civil, Mechanical and Manufacturing Innovation, under award CMMI-1942928. The work of J.G. was partially supported by the U.S. National Research Laboratory (US NRL) under contract N0017321P1059, as well as by the National Science Foundation, Division of Civil, Mechanical and Manufacturing Innovation, under award CMMI-1942928. The work of A.I., J.M., A.B., J.S., and C.S. was supported by the Office of Naval Research through U.S. Naval Research Laboratory’s core funding. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Guilleminot.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, S., Iliopoulos, A., Michopoulos, J. et al. Microstructurally-informed stochastic inhomogeneity of material properties and material symmetries in 3D-printed 316 L stainless steel. Comput Mech (2023). https://doi.org/10.1007/s00466-023-02424-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00466-023-02424-6

Keywords

Navigation