Skip to main content
Log in

Magnetic Resonance Express Analysis and Control of NV Diamond Wafers for Quantum Technologies

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Magnetic resonance methods for express analysis and control of diamond wafers with NV centers for quantum technologies were developed. The scanning NV-based ODMR spectrometer was built to analyze NV local concentration, coherent properties, stress/strain, nitrogen content, electron-nuclear interactions in diamond wafers for quantum technologies. As an example, a 3D image of the ODMR and PL maps was presented for a non-uniform distribution of NV centers in a diamond wafer, which had several growth zones with significantly different concentrations of nitrogen. The local stress/strain map was obtained by measuring the splitting of the ODMR line in zero magnetic field at room temperature. The double ODMR line is a consequence of the stress-induced splitting of the doublet with projections MS = + 1 and MS = − 1 in the ground triplet state of the NV center. Local concentration of nitrogen donors (in EPR literature it is designated as N or P1 centers) was estimated from the ratio of the intensity of satellites caused by interaction with nitrogen donors and the central line of ODMR. The central line has a 2E split into two overlapping lines, the intensity of one of the lines is selected. The spectrometer is also designed to perform pulsed measurements of Rabi oscillations, spin–lattice and spin–spin relaxation times at wafer points isolated by focused laser excitation. A new option for using a spectrometer was introduced for measuring the ODMR of NV centers in a linearly polarized light, which allowed to distinguish PL for centers of a certain orientation and suppress the PL from others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

Data are contained within the article.

References

  1. A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. von Borczyskowski, Science 276, 2012–2014 (1997). https://doi.org/10.1126/science.276.5321.2012

    Article  CAS  Google Scholar 

  2. A. Dräbenstedt, L. Fleury, C. Tietz, F. Jelezko, S. Kilin, A. Nizovtzev, J. Wrachtrup, Phys. Rev. B 60, 11503 (1999). https://doi.org/10.1103/PhysRevB.60.11503

    Article  ADS  Google Scholar 

  3. F. Jelezko, C. Tietz, A. Gruber, I. Popa, A. Nizovtsev, S. Kilin, J. Wrachtrup, Single Mol. 2, 255–260 (2001). https://doi.org/10.1002/1438-5171(200112)2:4%3C255::AID-SIMO255%3E3.0.CO;2-D

    Article  CAS  ADS  Google Scholar 

  4. J. Wrachtrup, F. Jelezko, J. Phys. Condens. Matter 18, S807 (2006). https://doi.org/10.1088/0953-8984/18/21/S08

    Article  CAS  ADS  Google Scholar 

  5. A.M. Zaitsev, Optical properties of diamond: a data handbook (Springer, Heidelberg, 2001). https://doi.org/10.1007/978-3-662-04548-0

    Book  Google Scholar 

  6. C.A.J. Ammerlaan, in Landolt-Börnstein, numerical data and functional relationships, in science and technology, new series. ed. by M. Schulz (Springer, Berlin, 2002), pp.6–76

    Google Scholar 

  7. P.G. Baranov, H.J. von Bardeleben, F. Jelezko, J. Wrachtrup, Magnetic resonance of semiconductors and their nanostructures: basic and advanced applications (Springer, Vienna, 2017). https://doi.org/10.1007/978-3-7091-1157-4

    Book  Google Scholar 

  8. M. Atatüre, D. Englund, N. Vamivakas, S.-Y. Lee, J. Wrachtrup, Nat. Rev. Mater. 3, 38–51 (2018). https://doi.org/10.1038/s41578-018-0008-9

    Article  CAS  ADS  Google Scholar 

  9. P.G. Baranov, A.A. Soltamova, D.O. Tolmachev, N.G. Romanov, R.A. Babunts, F.M. Shakhov, S.V. Kidalov, A.Y. Vul, G.V. Mamin, S.B. Orlinskii, N.I. Silkin, Small 7, 1533–1537 (2011). https://doi.org/10.1002/smll.201001887

    Article  CAS  PubMed  Google Scholar 

  10. L.M. Pham, N. Bar-Gill, D. Le Sage, C. Belthangady, A. Stacey, M. Markham, D.J. Twitchen, M.D. Lukin, R.L. Walsworth, Phys. Rev. B 86, 121202 (2012). https://doi.org/10.1103/PhysRevB.86.121202

    Article  CAS  ADS  Google Scholar 

  11. R.A. Babunts, A.N. Anisimov, V.V. Yakovleva, I.D. Breev, A.P. Bundakova, M.V. Muzafarova, P.G. Baranov, RF Patent No. 2775869 (2022)

  12. R.A. Babunts, I.D. Breev, D.D. Kramushchenko, A.P. Bundakova, M.V. Muzafarova, A.N. Anisimov, P.G. Baranov, J. Appl. Phys. 132, 175705 (2022). https://doi.org/10.1063/5.0107019

    Article  CAS  ADS  Google Scholar 

  13. S. Felton, A.M. Edmonds, M.E. Newton, P.M. Martineau, D. Fisher, D.J. Twitchen, J.M. Baker, Phys. Rev. B 79, 075203 (2009). https://doi.org/10.1103/PhysRevB.79.075203

    Article  CAS  ADS  Google Scholar 

  14. E. van Oort, P. Stroomer, M. Glasbeek, Phys. Rev. B 42, 8605 (1990). https://doi.org/10.1103/PhysRevB.42.8605

    Article  ADS  Google Scholar 

  15. R.A. Babunts, A.A. Soltamova, D.O. Tolmachev, V.A. Soltamov, A.S. Gurin, A.N. Anisimov, V.L. Preobrazhenskii, P.G. Baranov, JEPT Lett. 95, 429–432 (2012). https://doi.org/10.1134/S0021364012080024

    Article  CAS  ADS  Google Scholar 

  16. M. Simanovskaia, K. Jensen, A. Jarmola, K. Aulenbacher, N. Manson, D. Budker, Phys. Rev. B 87, 224106 (2013). https://doi.org/10.1103/PhysRevB.87.224106

    Article  CAS  ADS  Google Scholar 

  17. R.A. Babunts, A.S. Gurin, A.P. Bundakova, M.V. Muzafarova, A.N. Anisimov, P.G. Baranov, Tech. Phys. Lett. 49, 40–43 (2023). https://doi.org/10.21883/TPL.2023.01.55346.19391

    Article  Google Scholar 

  18. S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42–55 (2006). https://doi.org/10.1016/j.jmr.2005.08.013

    Article  CAS  PubMed  ADS  Google Scholar 

  19. K.M. Salikhov, J. Exp. Theor. Phys. 135, 617–631 (2022). https://doi.org/10.1134/S1063776122110164

    Article  CAS  ADS  Google Scholar 

  20. V.K. Sewani, H.H. Vallabhapurapu, Y. Yang, H.R. Firgau, C. Adambukulam, B.C. Johnson, J.J. Pla, A. Laucht, Am. J. Phys. 88, 1156–1169 (2020). https://doi.org/10.1119/10.0001905

    Article  CAS  ADS  Google Scholar 

  21. F.M. Hossain, M.W. Doherty, H.F. Wilson, L.C.L. Hollenberg, Phys. Rev. Lett. 101, 226403 (2008). https://doi.org/10.1103/PhysRevLett.101.226403

    Article  CAS  PubMed  ADS  Google Scholar 

  22. D. Braukmann, V.P. Popov, E.R. Glaser, T.A. Kennedy, M. Bayer, J. Debus, Phys. Rev. B 97, 125426 (2018). https://doi.org/10.1103/PhysRevB.97.125426

    Article  CAS  ADS  Google Scholar 

  23. A. Savvin, A. Dormidonov, E. Smetanina, V. Mitrokhin, E. Lipatov, D. Genin, S. Potanin, A. Yelisseyev, V. Vins, Nat. Commun. 12, 7118 (2021). https://doi.org/10.1038/s41467-021-27470-7

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. S.V. Titkov, V.V. Yakovleva, I.D. Breev, R.A. Babunts, P.G. Baranov, N.S. Bortnikov, Diam. Relat. Mater. 136, 109938 (2023). https://doi.org/10.1016/j.diamond.2023.109938

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation № 23-12-00152 (https://rscf.ru/project/23-12-00152/) and the state task of the Russian Federation (No. FSRU-2021-0008).

Author information

Authors and Affiliations

Authors

Contributions

All authors have the equal contribution in manuscript preparation.

Corresponding author

Correspondence to Yulia A. Uspenskaya.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflicts of interest.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 572 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babunts, R.A., Gurin, A.S., Uspenskaya, Y.A. et al. Magnetic Resonance Express Analysis and Control of NV Diamond Wafers for Quantum Technologies. Appl Magn Reson 55, 417–428 (2024). https://doi.org/10.1007/s00723-023-01632-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-023-01632-w

Navigation