Skip to main content
Log in

Investigation of the quartz cuvette surface contamination used for permanganate quantification in tap water by photothermal lens spectrometry

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this work, the PhotoThermal Lens (PTL) spectrometry was used to investigate the contamination effect of the quartz cuvette on the quantification of permanganate concentration in tap water at neutral pH. Different permanganate solutions were prepared at a concentration range from 0.2 µM to 10 µM. The PTL signal measurements for samples with the same permanganate concentration in tap water increase continuously. The PTL signals for samples with the same permanganate concentration in tap water showed a significant increase between two successive measurements. Contrary to the solutions prepared in distilled water where the PTL signal remains constant for all the measurements. Thus, it results from that the main cause of this behavior is related to the decomposition reaction of permanganate in tap water giving rise to manganese dioxide, which then will be adsorbed on the optical window surfaces of the quartz cuvette. The contribution of the adsorbed amount on the PTL signal was examined and its variation was described based on the Langmuir model. To remove this contamination effect caused by the adsorption process, three 0.1 M acidic solutions (HCl, H2SO4 and H3PO4) were applied separately for the cleaning of the optical window surfaces. The obtained results show that 4 min is sufficient to reach a desorption rate higher than 90% whatever the used acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Yu, L. Campos, T. Shi, G. Li, N. Graham, RSC Adv. Adv. 5, 27970–27977 (2015). https://doi.org/10.1039/c5ra01643f

    Article  ADS  Google Scholar 

  2. A.I. Omoike, D. Harmon, Chemosphere 223, 391–398 (2019). https://doi.org/10.1016/j.chemosphere.2019.02.036

    Article  ADS  Google Scholar 

  3. L. Hu, A.M. Stemig, K.H. Wammer, T.J. Strathmann, Environ. Sci. Technol. 45, 3635–3642 (2011). https://doi.org/10.1021/es104234m

    Article  ADS  Google Scholar 

  4. J. Jiang, Y. Gao, S.Y. Pang, Q. Wang, X. Huangfu, Y. Liu, J. Ma, Environ. Sci. Technol. 48, 10850–10858 (2014). https://doi.org/10.1021/es5008577

    Article  ADS  Google Scholar 

  5. R.B. Geerdink, R. Van Den Sebastiaan Hurk, O.J. Epema, Anal. Chim. Acta 961, 111 (2017). https://doi.org/10.1016/j.aca.2017.01.009

    Article  Google Scholar 

  6. A. Sinha Dhanjai, H. Zhao, J. Chen, S.M. Mugo, Encycloped Anal Sci. (2019). https://doi.org/10.1016/B978-0-12-409547-2.14517-2

    Article  Google Scholar 

  7. United State Environmental Protection Agency (USEPA): Edition of the Drinking Water Standards and Health Advisories, https://www.epa.gov/system/files/documents/2022-01/dwtable2018.pdf

  8. State Environmental Protection Administration (SEPA): Environmental Quality Standard for Surface Water (GB 3838–2002) (Standards Press, Beijing, 2002), p. 4e6, https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/shjzlbz/200206/W020061027509896672057.pdf (in Chinese)

  9. World Health Organization (WHO): Guidelines for Drinking Water Quality, 4th edn. (2011), https://iris.who.int/bitstream/handle/10665/44584/9789241548151_eng.pdf?sequence=1

  10. Z.S. Yan, B. Liu, F.S. Qu, A. Ding, H. Liang, Y. Zhao, G.B. Li, Sep. Purif. Technol.Purif. Technol. 172, 51–58 (2017). https://doi.org/10.1016/j.seppur.2016.07.0549

    Article  Google Scholar 

  11. X. Liu, H. Cai, J. Zou, Z. Pang, B. Yuan, Z. Zhou, Q. Cheng, Chemosphere 212, 604–610 (2018). https://doi.org/10.1016/j.chemosphere.2018.08.087

    Article  ADS  Google Scholar 

  12. S.T. McBeath, D.P. Wilkinson, N.J.D. Graham, Chemosphere 251, 126626 (2020). https://doi.org/10.1016/j.chemosphere.2020.126626

    Article  ADS  Google Scholar 

  13. Z. Pang, Y. Cai, W. Xiong, J. Xiao, J. Zou, Chemosphere 266, 128936 (2021). https://doi.org/10.1016/j.chemosphere.2020.128936

    Article  ADS  Google Scholar 

  14. L. Hao, Y. Qi, Y. Wu, D. Xia, Heliyon. 9, e13587 (2023). https://doi.org/10.1016/j.heliyon.2023.e13587

    Article  Google Scholar 

  15. R. Hannachi, Sens Actuators B Chem. 333, 129542 (2021). https://doi.org/10.1016/j.snb.2021.129542

    Article  Google Scholar 

  16. J.R. Laszakovits, A. Patterson, C. Hipsher, A.A. MacKay, Water Res. 151, 403–412 (2019). https://doi.org/10.1016/j.watres.2018.12.031

    Article  Google Scholar 

  17. Z. Kang, Z. He, Y. Wen, M. Liao, X. Li, H. Chen, Q. Zhang, Measurement 187, 110125 (2022). https://doi.org/10.1016/j.measurement.2021.110125

    Article  Google Scholar 

  18. S.E. Bialkowski, N.G.C. Astrath, M.A. Proskurnin, Photothermal spectroscopy methods (Wiley, Hoboken. p, 2019), p.512

    Book  Google Scholar 

  19. J. Zhou, S. Xu, J. Liu, Nanomaterials 12, 1884 (2022). https://doi.org/10.3390/nano12111884

    Article  Google Scholar 

  20. M. Franko, L. Goljat, M. Liu, H. Budasheva, M. Žorž Furlan, D. Korte, Sensors. 23, 472 (2023). https://doi.org/10.3390/s23010472

    Article  ADS  Google Scholar 

  21. I. Soyeh, R. Hannachi, H. Sammouda, L. Béji, Appl. Phys. B 128(9), 174 (2022). https://doi.org/10.1007/s00340-022-07894-9

    Article  Google Scholar 

  22. F. Freeman, C.O. Fuselier, C.R. Armstead, C.E. Dalton, P.A. Davidson, E.M. Karchefski, D.E. Krochman, M.N. Johnson, N.K. Jones, J. Am. Chem. Soc. 103, 1154–1159 (1981). https://doi.org/10.1021/ja00395a026

    Article  Google Scholar 

  23. F. Mata-Perez, J.F. Perez-Benito, Can. J. Chem. 63, 988 (1985). https://doi.org/10.1139/v85-165

    Article  Google Scholar 

  24. M. Dose Wesley, W. Donne Scott, J. Appl. Cryst. 46, 1283–1288 (2013). https://doi.org/10.1107/S0021889813017846

    Article  ADS  Google Scholar 

  25. J. Shen, R.D. Lowe, R.D. Snook, Chem. Phys. 165, 385–396 (1992). https://doi.org/10.1016/0301-0104(92)87053-C

    Article  Google Scholar 

  26. A. Marcano, H. Cabrera, M. Guerra, R.A. Cruz, C. Jacinto, T. Catunda, J. Opt. Soc. Am. B 23(7), 1408–1413 (2006). https://doi.org/10.1364/JOSAB.23.001408

    Article  ADS  Google Scholar 

  27. G. Kim, D. Kim, S. Kang, J. Yoo, H. Kim, Appl. Sci. 11, 1535 (2021). https://doi.org/10.3390/app11041535

    Article  Google Scholar 

  28. M.Y. Kononets, M.A. Proskurnin, S.N. Bendrysheva, V.V. Chernysh, Talanta 53, 1221–1227 (2001). https://doi.org/10.1016/S0039-9140(00)00613-5

    Article  Google Scholar 

  29. D.A. Nedosekin, A.V. Pirogov, W. Faubel, U. Pyell, M.A. Proskurnin, Talanta 68, 1474–1481 (2006). https://doi.org/10.1016/j.talanta.2005.08.010

    Article  Google Scholar 

  30. D.A. Nedosekina, E.V. Ageevab, I.V. Mikheevc, D.S. Volkovc, M.A. Proskurnin, J. Anal. Chem. 73(6), 526–532 (2018). https://doi.org/10.1134/S1061934818060102

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ilhem Soyeh prepared the experimental results Riadh Hannachi wrote the manuscrit and revised the figures Habib Sammouda revised the manuscript

Corresponding author

Correspondence to Riadh Hannachi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soyeh, I., Hannachi, R. & Sammouda, H. Investigation of the quartz cuvette surface contamination used for permanganate quantification in tap water by photothermal lens spectrometry. Appl. Phys. B 130, 15 (2024). https://doi.org/10.1007/s00340-023-08149-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-023-08149-x

Navigation