Skip to main content
Log in

Ground and excited states of the finite-size Fe chains on Pt(664) surface

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The energy barriers for magnetization reversal of the finite-size Fe chains on Pt(664) surface have been calculated using the geodesic nudged elastic band method. The Dzyaloshinskii–Moriya interaction and the dipole–dipole interaction have been taken into account. It has been found that the ground states of Fe/Pt(664) atomic chains are non-collinear at the ends. The magnetization reversal of short atomic chains occurs without the formation of the domain walls. While the magnetization reversal of the long atomic chains occurs via the formation of the domain walls. The interplay between the magnetic anisotropy energy and the Dzyaloshinskii–Moriya interaction leads to the rotation of the domain wall plane. As a result, the domain walls in Fe/Pt(664) atomic chains are intermediate configurations between Bloch and Néel walls. The dipole–dipole interaction weakly influences the value of the energy barriers and may be neglected. It is shown that the presented results can be explained in the framework of the classical continuous model. The constructed approximate functions correctly describe all features of the ground states and the saddle points. The structure of the domain walls and the dependencies of the energy barriers on the parameters of the model are different from the case of the Co/Pt(664) system investigated recently.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

Data will be made available on reasonable request.

Notes

  1. Here we neglect the symmetric anisotropic exchange interaction following to Ref. [30].

  2. All angles are measured in radians.

  3. More exact calculations of the critical temperature are beyond the scope of the paper.

  4. The angle \(\beta \) is the same as the angle \(\phi _i\) in Fig. 1a. We use a different notation to emphasize that all magnetic moments in the domain wall lie in the same plane (\(\phi _i=\beta \) for all i).

  5. The difference between the energy barriers is related to the inversion symmetry breaking.

  6. Eq. (15) gives the value of \(\Delta N=5.080\) and \(N_0=4\Delta N\). Unfortunately, the direct comparison of \(\Delta N\) with the numerical results for the discrete model is not possible, because \(\Delta N\) is not integer. However, the good agreement between the GNEB results and theoretical approximation in Fig. 2 indicates that the estimation (15) of the \(\Delta N\) is quite well.

References

  1. I. Zutic, J. Fabian, S. Das Sarma, Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004). https://doi.org/10.1103/RevModPhys.76.323

    Article  ADS  Google Scholar 

  2. D. Sander, The magnetic anisotropy and spin reorientation of nanostructures and nanoscale films. J. Phys. Condens. Matter 16(20), 603 (2004). https://doi.org/10.1088/0953-8984/16/20/R01

    Article  ADS  Google Scholar 

  3. A. Enders, R. Skomski, J. Honolka, Magnetic surface nanostructures. J. Phys. Condens. Matter 22(43), 433001 (2010). https://doi.org/10.1088/0953-8984/22/43/433001

    Article  ADS  Google Scholar 

  4. H. Wang, Y. Yu, Y. Sun, Q. Chen, Magnetic nanochains: a review. NANO 06(01), 1–17 (2011). https://doi.org/10.1142/S1793292011002305

    Article  Google Scholar 

  5. N.D. Mermin, Quantum Computer Science: An Introduction (Cambridge University Press, Cambridge, 2007)

    Book  Google Scholar 

  6. S. Bose, Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003). https://doi.org/10.1103/PhysRevLett.91.207901

    Article  ADS  Google Scholar 

  7. H. Verma, L. Chotorlishvili, J. Berakdar, S.K. Mishra, Qubit(s) transfer in helical spin chains. Europhys. Lett. 119(3), 30001 (2017). https://doi.org/10.1209/0295-5075/119/30001

    Article  ADS  Google Scholar 

  8. H. Verma, L. Chotorlishvili, J. Berakdar, S.K. Mishra, Quantum teleportation by utilizing helical spin chains for sharing entanglement. Quantum Inf. Process. 20, 54 (2021). https://doi.org/10.1007/s11128-020-02971-4

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Kaczor, I. Tralle, P. Jakubczyk, S. Stagraczynski, L. Chotorlishvili, Switching of the information backflow between a helical spin system and non-Markovian bath. Ann. Phys. 442, 168918 (2022). https://doi.org/10.1016/j.aop.2022.168918

    Article  MathSciNet  Google Scholar 

  10. D.-J. Choi, N. Lorente, J. Wiebe, K. von Bergmann, A.F. Otte, A.J. Heinrich, Colloquium: atomic spin chains on surfaces. Rev. Mod. Phys. 91, 041001 (2019). https://doi.org/10.1103/RevModPhys.91.041001

    Article  ADS  Google Scholar 

  11. A.G. Syromyatnikov, S.V. Kolesnikov, A.M. Saletsky, A.L. Klavsyuk, Formation and properties of metallic atomic chains and wires. Phys. Usp. 64(7), 671–701 (2021). https://doi.org/10.3367/UFNe.2020.06.038789

    Article  ADS  Google Scholar 

  12. J. Shen, J.P. Pierce, E.W. Plummer, J. Kirschner, The effect of spatial confinement on magnetism: films, stripes and dots of fe on cu(111). J. Phys. Condens. Matter 15(2), 1 (2002). https://doi.org/10.1088/0953-8984/15/2/201

    Article  Google Scholar 

  13. J. Shen, R. Skomski, M. Klaua, H. Jenniches, S.S. Manoharan, J. Kirschner, Magnetism in one dimension: Fe on cu(111). Phys. Rev. B 56, 2340–2343 (1997). https://doi.org/10.1103/PhysRevB.56.2340

    Article  ADS  Google Scholar 

  14. P. Gambardella, A. Dallmeyer, K. Maiti, M.C. Malagoli, W. Eberhardt, K. Kern, C. Carbone, Ferromagnetism in one-dimensional monatomic metal chains. Nature 416, 301 (2002). https://doi.org/10.1038/416301a

    Article  ADS  Google Scholar 

  15. P. Gambardella, S. Rusponi, M. Veronese, S.S. Dhesi, C. Grazioli, A. Dallmeyer, I. Cabria, R. Zeller, P.H. Dederichs, K. Kern, C. Carbone, H. Brune, Giant magnetic anisotropy of single cobalt atoms and nanoparticles. Science 300(5622), 1130–1133 (2003). https://doi.org/10.1126/science.1082857

    Article  ADS  Google Scholar 

  16. A.G. Syromyatnikov, S.V. Kolesnikov, A.M. Saletsky, A.L. Klavsyuk, The structure phase transition in atom-wide co wires on a vicinal Cu111 surface. Mater. Lett. 179, 69–72 (2016). https://doi.org/10.1016/j.matlet.2016.05.024

    Article  Google Scholar 

  17. P. Gambardella, A. Dallmeyer, K. Maiti, M.C. Malagoli, S. Rusponi, P. Ohresser, W. Eberhardt, C. Carbone, K. Kern, Oscillatory magnetic anisotropy in one-dimensional atomic wires. Phys. Rev. Lett. 93, 077203 (2004). https://doi.org/10.1103/PhysRevLett.93.077203

    Article  ADS  Google Scholar 

  18. B. Dupé, J.E. Bickel, Y. Mokrousov, F. Otte, K. von Bergmann, A. Kubetzka, S. Heinze, R. Wiesendanger, Giant magnetization canting due to symmetry breaking in zigzag co chains on ir(001). New J. Phys. 17(2), 023014 (2015). https://doi.org/10.1088/1367-2630/17/2/023014

    Article  ADS  Google Scholar 

  19. O. Gomonay, V. Baltz, A. Brataas, Y. Tserkovnyak, Antiferromagnetic spin textures and dynamics. Nat. Phys. 14, 213–216 (2018). https://doi.org/10.1038/s41567-018-0049-4

    Article  Google Scholar 

  20. V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, Y. Tserkovnyak, Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018). https://doi.org/10.1103/RevModPhys.90.015005

    Article  ADS  MathSciNet  Google Scholar 

  21. T. Jungwirth, X. Marti, P. Wadley, J. Wunderlich, Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016). https://doi.org/10.1038/nnano.2016.18

    Article  ADS  Google Scholar 

  22. I. Dzyaloshinsky, A thermodynamic theory of “weak’’ ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4(4), 241–255 (1958). https://doi.org/10.1016/0022-3697(58)90076-3

    Article  ADS  Google Scholar 

  23. T. Moriya, New mechanism of anisotropic super exchange interaction. Phys. Rev. Lett. 4, 228–230 (1960). https://doi.org/10.1103/PhysRevLett.4.228

    Article  ADS  Google Scholar 

  24. H.T. Nembach, J.M. Shaw, M. Weiler, E. Jué, T.J. Silva, Linear relation between Heisenberg exchange and interfacial Dzyaloshinskii–Moriya interaction in metal films. Nat. Phys. 11, 825–829 (2015). https://doi.org/10.1038/nphys3418

    Article  Google Scholar 

  25. J. Cho, N.-H. Kim, S. Lee, J.-S. Kim, R. Lavrijsen, A. Solignac, Y. Yin, D.-S. Han, N.J.J. van Hoof, H.J.M. Swagten, B. Koopmans, C.-Y. You, Thickness dependence of the interfacial Dzyaloshinskii–Moriya interaction in inversion symmetry broken systems. Nat. Commun. 6, 7635 (2015). https://doi.org/10.1038/ncomms8635

    Article  ADS  Google Scholar 

  26. Y. Mokrousov, A. Thiess, S. Heinze, Structurally driven magnetic state transition of biatomic fe chains on ir(001). Phys. Rev. B 80, 195420 (2009). https://doi.org/10.1103/PhysRevB.80.195420

    Article  ADS  Google Scholar 

  27. R. Mazzarello, E. Tosatti, Connection between magnetism and structure in Fe double chains on the ir(100) surface. Phys. Rev. B 79, 134402 (2009). https://doi.org/10.1103/PhysRevB.79.134402

    Article  ADS  Google Scholar 

  28. M. Menzel, Y. Mokrousov, R. Wieser, J.E. Bickel, E. Vedmedenko, S. Blügel, S. Heinze, K. von Bergmann, A. Kubetzka, R. Wiesendanger, Information transfer by vector spin chirality in finite magnetic chains. Phys. Rev. Lett. 108, 197204 (2012). https://doi.org/10.1103/PhysRevLett.108.197204

    Article  ADS  Google Scholar 

  29. M. Heide, G. Bihlmayer, S. Blügel, Dzyaloshinskii–Moriya interaction accounting for the orientation of magnetic domains in ultrathin films: Fe/w(110). Phys. Rev. B 78, 140403 (2008). https://doi.org/10.1103/PhysRevB.78.140403

    Article  ADS  Google Scholar 

  30. B. Schweflinghaus, B. Zimmermann, M. Heide, G. Bihlmayer, S. Blügel, Role of Dzyaloshinskii–Moriya interaction for magnetism in transition-metal chains at pt step edges. Phys. Rev. B 94, 024403 (2016). https://doi.org/10.1103/PhysRevB.94.024403

    Article  ADS  Google Scholar 

  31. L. Chotorlishvili, X.-G. Wang, A. Dyrdal, G.-H. Guo, V.K. Dugaev, J. Barnas, J. Berakdar, Rectification of the spin seebeck current in noncollinear antiferromagnets. Phys. Rev. B 106, 014417 (2022). https://doi.org/10.1103/PhysRevB.106.014417

    Article  ADS  Google Scholar 

  32. M. Heide, G. Bihlmayer, S. Blugel, Non-planar Dzyaloshinskii spirals and magnetic domain walls in non-centrosymmetric systems with orthorhombic anisotropy. J. Nanosci. Nanotechnol. 11, 3005–3015 (2011). https://doi.org/10.1166/jnn.2011.3926

    Article  Google Scholar 

  33. K.J.A. Franke, C. Ophus, A.K. Schmid, C.H. Marrows, Switching between magnetic Bloch and néel domain walls with anisotropy modulations. Phys. Rev. Lett. 127, 127203 (2021). https://doi.org/10.1103/PhysRevLett.127.127203

    Article  ADS  Google Scholar 

  34. L. Sánchez-Tejerina, O. Alejos, E. Martínez, J.M. Muñoz, Asymmetric driven dynamics of Dzyaloshinskii domain walls in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy. J. Magn. Magn. Mater. 409, 155–162 (2016). https://doi.org/10.1016/j.jmmm.2016.02.067

    Article  ADS  Google Scholar 

  35. S. Rohart, A. Thiaville, Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii–Moriya interaction. Phys. Rev. B 88, 184422 (2013). https://doi.org/10.1103/PhysRevB.88.184422

    Article  ADS  Google Scholar 

  36. S.V. Kolesnikov, E.S. Sapronova, I.N. Kolesnikova, An influence of the Dzyaloshinskii–Moriya interaction on the magnetization reversal process of the finite-size co chains on pt(664) surface. J. Magn. Magn. Mater. 579, 170869 (2023). https://doi.org/10.1016/j.jmmm.2023.170869

    Article  Google Scholar 

  37. L. Udvardi, L. Szunyogh, K. Palotás, P. Weinberger, First-principles relativistic study of spin waves in thin magnetic films. Phys. Rev. B 68, 104436 (2003). https://doi.org/10.1103/PhysRevB.68.104436

    Article  ADS  Google Scholar 

  38. J. Hermenau, S. Brinker, M. Marciani, M. Steinbrecher, M. dos Santos Dias, R. Wiesendanger, S. Lounis, J. Wiebe, Stabilizing spin systems via symmetrically tailored RKKY interactions. Nat. Commun. 10, 2565 (2019). https://doi.org/10.1038/s41467-019-10516-2

    Article  ADS  Google Scholar 

  39. W. Kohn, Nobel lecture: electronic structure of matter–wave functions and density functionals. Rev. Mod. Phys. 71, 1253–1266 (1999). https://doi.org/10.1103/RevModPhys.71.1253

    Article  ADS  Google Scholar 

  40. H. Ebert, D. Ködderitzsch, J. Minár, Calculating condensed matter properties using the KKR-green’s function method-recent developments and applications. Rep. Prog. Phys. 74(9), 096501 (2011). https://doi.org/10.1088/0034-4885/74/9/096501

    Article  ADS  Google Scholar 

  41. L.D. Landau, E.M. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjet. 8, 153 (1935)

    Google Scholar 

  42. Y. Li, B.-G. Liu, Long-range ferromagnetism in one-dimensional monatomic spin chains. Phys. Rev. B 73, 174418 (2006). https://doi.org/10.1103/PhysRevB.73.174418

    Article  ADS  Google Scholar 

  43. S.V. Kolesnikov, I.N. Kolesnikova, Improved kinetic Monte Carlo models for computational and analytical investigations of the magnetic properties of finite-size atomic chains. Europhys. Lett. 137(5), 56003 (2022). https://doi.org/10.1209/0295-5075/ac5b20

    Article  ADS  Google Scholar 

  44. S.V. Kolesnikov, Low-temperature study of the magnetic properties of finite atomic chains. JETP Lett. 103, 588–592 (2016). https://doi.org/10.1134/S0021364016090034

    Article  ADS  Google Scholar 

  45. S.V. Kolesnikov, I.N. Kolesnikova, An estimate for the magnetization reversal time of antiferromagnetic chains within the Heisenberg model. J. Exp. Theor. Phys. 125, 644 (2017). https://doi.org/10.1134/S1063776117090060

    Article  ADS  Google Scholar 

  46. S.V. Kolesnikov, I.N. Kolesnikova, Magnetic properties of the finite-length biatomic chains in the framework of the single domain-wall approximation. Phys. Rev. B 100, 224424 (2019). https://doi.org/10.1103/PhysRevB.100.224424

    Article  ADS  Google Scholar 

  47. P. Hänggi, P. Talkner, M. Borkovec, Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990). https://doi.org/10.1103/RevModPhys.62.251

    Article  ADS  MathSciNet  Google Scholar 

  48. P.F. Bessarab, V.M. Uzdin, H. Jónsson, Method for finding mechanism and activation energy of magnetic transitions, applied to Skyrmion and antivortex annihilation. Comput. Phys. Commun. 196, 335–347 (2015). https://doi.org/10.1016/j.cpc.2015.07.001

    Article  ADS  Google Scholar 

  49. I.S. Lobanov, M.N. Potkina, V.M. Uzdin, Stability and lifetimes of magnetic states of nano- and microstructures (brief review). JETP Lett. 113, 801–813 (2021). https://doi.org/10.1134/S0021364021120109

    Article  ADS  Google Scholar 

  50. S.V. Kolesnikov, E.S. Sapronova, Influence of Dzyaloshinskii–Moriya and dipole-dipole interactions on spontaneous magnetization reversal time of finite-length co chains on pt(664) surfaces. IEEE Magn. Lett. 13, 1–5 (2022). https://doi.org/10.1109/LMAG.2022.3226656

    Article  Google Scholar 

  51. B. Lazarovits, L. Szunyogh, P. Weinberger, B. Újfalussy, Magnetic properties of finite Fe chains at fcc cu(001) and cu(111) surfaces. Phys. Rev. B 68, 024433 (2003). https://doi.org/10.1103/PhysRevB.68.024433

    Article  ADS  Google Scholar 

  52. S. Pick, P.A. Ignatiev, A.L. Klavsyuk, W. Hergert, V.S. Stepanyuk, P. Bruno, Structure and magnetic properties of Co chains on a stepped Cu surface. J. Phys. Condens. Matter 19(44), 446001 (2007). https://doi.org/10.1088/0953-8984/19/44/446001

    Article  ADS  Google Scholar 

  53. E.M. Chudnovsky, L. Gunther, Quantum tunneling of magnetization in small ferromagnetic particles. Phys. Rev. Lett. 60, 661–664 (1988). https://doi.org/10.1103/PhysRevLett.60.661

    Article  ADS  MathSciNet  Google Scholar 

  54. W. Wernsdorfer, R. Clérac, C. Coulon, L. Lecren, H. Miyasaka, Quantum nucleation in a single-chain magnet. Phys. Rev. Lett. 95, 237203 (2005). https://doi.org/10.1103/PhysRevLett.95.237203

    Article  ADS  Google Scholar 

  55. A.S. Smirnov, N.N. Negulyaev, W. Hergert, A.M. Saletsky, V.S. Stepanyuk, Magnetic behavior of one- and two-dimensional nanostructures stabilized by surface-state electrons: a kinetic Monte Carlo study. New J. Phys. 11(6), 063004 (2009). https://doi.org/10.1088/1367-2630/11/6/063004

  56. N.S. Kabanov, R. Heimbuch, H.J.W. Zandvliet, A.M. Saletsky, A.L. Klavsyuk, Atomic structure of self-organizing iridium induced nanowires on ge(001). Appl. Surf. Sci. 404, 12–17 (2017). https://doi.org/10.1016/j.apsusc.2017.01.206

    Article  ADS  Google Scholar 

  57. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, New York, 1960)

    Google Scholar 

  58. R. Rajaraman, Solitons and Instantons. An Introduction to Solitons and Instantons in Quantum Field Theory (North-Holland Publishing Company, Amsterdam, 1982)

    Google Scholar 

  59. V. Sadovnichy, A. Tikhonravov, V. Voevodin, V. Opanasenko, “lomonosov”: supercomputing at Moscow State University, in Contemporary High Performance Computing: From Petascale Toward Exascale (CRC Press, Boca Raton, USA, 2013), pp. 283–307

  60. V.V. Voevodin, A.S. Antonov, D.A. Nikitenko, P.A. Shvets, S.I. Sobolev, I.Y. Sidorov, K.S. Stefanov, V.V. Voevodin, S.A. Zhumatiy, Supercomputer lomonosov-2: large scale, deep monitoring and fine analytics for the user community. Supercomput. Front. Innov. 6(2), 4–11 (2019). https://doi.org/10.14529/jsfi190201

    Article  Google Scholar 

Download references

Acknowledgements

The research is carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University [59, 60]. The investigation is supported by the Russian Science Foundation (Project No 21-72-20034). E.S. Sapronova also acknowledges financial support of the Theoretical Physics and Mathematics Advancement Foundation “BASIS”.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to the paper.

Corresponding author

Correspondence to Sergey V. Kolesnikov.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnikov, S.V., Sapronova, E.S. & Kolesnikova, I.N. Ground and excited states of the finite-size Fe chains on Pt(664) surface. Eur. Phys. J. B 96, 163 (2023). https://doi.org/10.1140/epjb/s10051-023-00634-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00634-8

Navigation