Skip to main content
Log in

Time-dependent theory of single-photon scattering from a two-qubit system

  • Regular Article - Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

This paper investigates the manipulation of photon propagation in a one-dimensional waveguide coupled to a system of two identical superconducting qubits. The study focuses on the spatio-temporal distribution of the electric field resulting from the scattering of a single-photon narrow pulse. The method employed extends a previously developed time-dependent theory for a single qubit. Utilizing the Wigner-Weisskopf approximation, the explicit expressions for the forward and backward photon scattering amplitudes are derived. The associated electric fields are calculated for various regions in the 1D space, revealing contributions from the free incoming photon field, spontaneous qubit decay, and steady-state solutions. The findings contribute to understanding the behavior of superconducting qubits in open waveguide, providing insights into their potential applications in quantum devices and information technologies.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

The manuscript has no associated data in a public repository.

References

  1. J. M. Raimond, M. Brune, and S. Haroche, Manipulating quantum entanglement with atoms and photons in a cavity, Rev. Mod. Phys. 73, 565 (2001)., 565 (2001)

  2. D. Roy, C.M. Wilson, O. Firstenberg, Strongly interacting photons in one-dimensional continuum Rev. Mod. Phys. 89, 021001 (2017)

    Article  Google Scholar 

  3. A.S. Sheremet, M.I. Petrov, I.V. Iorsh, A.V. Poshakinskiy, A.N. Poddubny, Waveguide quantum electrodynamics: Collective radiance and photon-photon correlations. Rev. Mod. Phys. 95, 015002 (2023)

    Article  ADS  Google Scholar 

  4. P. Krantz, M. Kjaergaard, F. Yan, T.P. Orlando, S. Gustavsson, W.D. Oliver, A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019)

    Article  ADS  Google Scholar 

  5. X. Gu, A.F. Kockum, A. Miranowicz, Y.-X. Liu, F. Nori, Microwave photonics with superconducting quantum circuits. Phys. Rep. 718, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Kjaergaard, M.E. Schwartz, J. Braumüller, P. Krantz, J.I.-J. Wang, S. Gustavsson, W.D. Oliver, Superconducting qubits: current state of play. Ann. Rev. Condensed Matter Phys. 11, 369 (2019)

    Article  ADS  Google Scholar 

  7. J. Ruostekoski, J. Javanainen, Arrays of strongly coupled atoms in a one-dimensional waveguide. Phys. Rev. A 96, 033857 (2017)

    Article  ADS  Google Scholar 

  8. K. Lalumi’ere, B.C. Sanders, A.F. van Loo, A. Fedorov, A. Wallraff, A. Blais, Input-output theory for waveguide QED with an ensemble of inhomogeneous atoms. Phys. Rev. A 88, 043806 (2013)

    Article  ADS  Google Scholar 

  9. D.E. Chang, L. Jiang, A.V. Gorshkov, H.J. Kimble, Cavity QED with atomic mirrors. New J. Phys. 14, 063003 (2012)

    Article  ADS  Google Scholar 

  10. M. Mirhosseini, E. Kim, X. Zhang, A. Sipahigil, P.B. Dieterle, A.J. Keller, A. Asenjo-Garcia, D.E. Chang, O. Painter, Cavity quantum electrodynamics with atom-like mirrors. Nature 569, 692 (2019)

    Article  ADS  Google Scholar 

  11. J.D. Brehm, A.N. Poddubny, A. Stehli, T. Wolz, H. Rotzinger, A.V. Ustinov, Waveguide bandgap engineering with an array of superconducting qubits. npj Quantum Materials 6, 10 (2021)

    Article  ADS  Google Scholar 

  12. A.F. van Loo, A. Fedorov, K. Lalumi’ere, B.C. Sanders, A. Blais, A. Wallraff, Photon-mediated interactions between distant artificial atoms. Science 342, 1494 (2014)

    Google Scholar 

  13. J.-T. Shen, S. Fan, Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom. Phys. Rev. A 79, 023837 (2009)

    Article  ADS  Google Scholar 

  14. M.-T. Cheng, J. Xu, G.S. Agarwal, Waveguide transport mediated by strong coupling with atoms. Phys. Rev. A 95, 053807 (2017)

    Article  ADS  Google Scholar 

  15. Y.-L.L. Fang, H. Zheng, H.U. Baranger, One-dimensional waveguide coupled to multiple qubits photon-photon correlations. EPJ Quantum Technol. 1, 3 (2014)

    Article  Google Scholar 

  16. H. Zheng, H.U. Baranger, Persistent Quantum Beats and Long-Distance Entanglement from Waveguide-Mediated Interactions. Phys. Rev. Lett. 110, 113601 (2013)

    Article  ADS  Google Scholar 

  17. D. Roy, Correlated few-photon transport in one-dimensional waveguides: Linear and nonlinear dispersions. Phys. Rev. A 83, 043823 (2011)

    Article  ADS  Google Scholar 

  18. J.-F. Huang, T. Shi, C.P. Sun, F. Nori, Controlling single-photon transport in waveguides with finite cross section. Phys. Rev. A 88, 013836 (2013)

    Article  ADS  Google Scholar 

  19. G. Diaz-Camacho, D. Porras, J.J. Garcia-Ripoll, Photon-mediated qubit interactions in one-dimensional discrete and continuous models. Phys. Rev. A 91, 063828 (2015)

    Article  ADS  Google Scholar 

  20. S. Fan, S.E. Kocabas, J.-T. Shen, Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit. Phys. Rev. A 82, 063821 (2010)

    Article  ADS  Google Scholar 

  21. A.H. Kiilerich, K. Molmer, Input-Output Theory with Quantum Pulses. Phys. Rev. Lett. 123, 123604 (2019)

    Article  ADS  Google Scholar 

  22. Y.S. Greenberg, A.A. Shtygashev, Non hermitian Hamiltonian approach to the microwave transmission through a one-dimensional qubit chain. Phys. Rev. A 92, 063835 (2015)

    Article  ADS  Google Scholar 

  23. Y.S. Greenberg, A.A. Shtygashev, A.G. Moiseev, Waveguide band-gap N-qubit array with a tunable transparency resonance. Phys. Rev. A 103, 023508 (2021)

    Article  ADS  Google Scholar 

  24. T.S. Tsoi, C.K. Law, Quantum interference effects of a single photon interacting with an atomic chain. Phys. Rev. A 78, 063832 (2008)

    Article  ADS  Google Scholar 

  25. Y. Chen, M. Wubs, J. Mork, A.F. Koendrink, Coherent single-photon absorption by single emitters coupled to one-dimensional nanophotonic waveguides. New J. Phys. 13, 103010 (2011)

    Article  ADS  Google Scholar 

  26. Z. Liao, X. Zeng, S.-Y. Zhu, M.S. Zubairy, Single-photon transport through an atomic chain coupled to a one-dimensional nanophotonic waveguide. Phys. Rev. A 92, 023806 (2015)

    Article  ADS  Google Scholar 

  27. Z. Liao, H. Nha, M.S. Zubairy, Dynamical theory of single-photon transport in a one-dimensional waveguide coupled to identical and nonidentical emitters. Phys. Rev. A 94, 053842 (2016)

    Article  ADS  Google Scholar 

  28. Z. Liao, X. Zeng, H. Nha, M.S. Zubairy, Photon transport in a one-dimensional nanophotonic waveguide QED system Phys. Scr. 91, 063004 (2016)

    Google Scholar 

  29. C. Zhou, Z. Liao, M.S. Zubairy, Decay of a single photon in a cavity with atomic mirrors. Phys. Rev. A 105, 033705 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  30. Y.S. Greenberg, A.A. Shtygashev, The pulsed excitation in two-qubit systems. Phys. Solid State 60, 2109 (2018)

    Article  ADS  Google Scholar 

  31. P. Domokos, P. Horak, H. Ritsch, Quantum description of light-pulse scattering on a single atom in waveguides. Phys. Rev. A 65, 033832 (2002)

    Article  ADS  Google Scholar 

  32. Y.S. Greenberg, A.G. Moiseev, A.A. Shtygashev, Single-photon scattering on a qubit: Space-time structure of the scattered field. Phys. Rev. A 107, 013519 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  33. F. Lecocq, F. Quinlan, K. Cicak, J. Aumentado, S.A. Diddams, J.D. Teufel, Control and readout of a superconducting qubit using a photonic link. Nature 591, 575 (2021)

    Article  ADS  Google Scholar 

  34. K.J. Blow, R. Loudon, S.J.D. Phoenix, Continuum fields in quantum optics. Phys. Rev. A 42, 4102 (1990)

    Article  ADS  Google Scholar 

  35. G. Drobny, M. Havukainen, V. Buzek, Stimulated emission via quantum interference Scattering of one-photon packets on an atom in a ground state. J. Mod. Optics 47, 851 (2000)

    Article  ADS  Google Scholar 

  36. M. Ley, R. Loudon, Quantum theory of high resolution length measurement with a Fabry-Perot interferometer. J. Mod. Opt. 34, 227 (1987)

    Article  ADS  Google Scholar 

  37. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, NIST, (1964)

  38. I. S. Gradshteyn, I. M. Ryzhik Table of Integrals, Series, and Products. Elsevier Inc. 7-th ed. Amsterdam (2007), 1220 pages

  39. E. Jahnke, F. Emde, F. Lösch, Tables of higher functions. (1965), 7th ed

Download references

Acknowledgements

The authors thank O. V. Kibis and A. N. Sultanov for fruitful discussions. The work is supported by the Ministry of Science and Higher Education of Russian Federation under the project FSUN-2023-0006.

Author information

Authors and Affiliations

Authors

Contributions

YSG wrote the manuscript and contributed to its theoretical interpretation. AAS and AGM performed analytical calculations and computer simulations. All authors discussed the results and commented on the manuscript. The authors declare that they have no competing interests.

Corresponding author

Correspondence to Ya. S. Greenberg.

Appendices

Appendix A: Derivation of equations for qubits’ amplitudes (16), (17)

Taking the qubits’ amplitudes \(\beta _n(t')\) out of integrals in (14), (15) we obtain:

$$\begin{aligned} \frac{{d\beta _1 }}{{dt}}= & {} - i\int \limits _0^\infty {d\omega } g(\omega )\gamma _0 \left( \omega \right) e^{ - i(\omega - \Omega )t} \nonumber \\{} & {} - 2\beta _1 (t)\int \limits _0^\infty {d\omega } g^2 (\omega )I(\omega ,t) \nonumber \\{} & {} - 2\beta _2 (t)\int \limits _0^\infty {d\omega } g^2 (\omega )\cos (k_\omega d)I(\omega ,t), \end{aligned}$$
(A1)
$$\begin{aligned} \frac{{d\beta _2 }}{{dt}}= & {} - i\int \limits _0^\infty {d\omega } g(\omega )\gamma _0 \left( \omega \right) e^{ik_\omega d} e^{ - i(\omega - \Omega )t}\nonumber \\{} & {} - 2\beta _1 (t)\int \limits _0^\infty {d\omega } g^2 (\omega )\cos (k_\omega d)I(\omega ,t) \nonumber \\{} & {} - 2\beta _2 (t)\int \limits _0^\infty {d\omega } g^2 (\omega )I(\omega ,t), \end{aligned}$$
(A2)

where

$$\begin{aligned} I(\omega ,t) = \int \limits _0^t {} e^{ - i\left( {\omega - \Omega } \right) (t - t')} dt'. \end{aligned}$$
(A3)

Next, we change variables in (A3), \(t-t'=\tau \), and tend the upper bound of integral to infinity.

$$\begin{aligned} I(\omega ,t)= & {} \int \limits _0^t {dt'} e^{ - i\left( {\omega - \Omega } \right) (t - t')} = \int \limits _0^t {d\tau } e^{ - i\left( {\omega - \Omega } \right) \tau } \nonumber \\{} & {} \approx \int \limits _0^\infty {d\tau } e^{ - i\left( {\omega - \Omega } \right) \tau } = \pi \delta (\omega - \Omega ) - iP\frac{1}{{\omega - \Omega }} ,\nonumber \\ \end{aligned}$$
(A4)

where \(P\frac{1}{\omega -\Omega }\) denotes Cauchy’s principal value.

Then, for (A1), (A2) we obtain:

$$\begin{aligned} \frac{{d\beta _1 }}{{dt}}= & {} - i\int \limits _0^\infty {d\omega } g(\omega )\gamma _0 \left( \omega \right) e^{ - i(\omega - \Omega )t} \nonumber \\{} & {} - 2\pi \beta _1 (t)g^2 (\Omega ) - 2\pi \beta _2 (t)g^2 (\Omega )\cos (k_\Omega d) \nonumber \\{} & {} + i2\beta _1 (t)P\int \limits _0^\infty {d\omega } \frac{{g^2 (\omega )}}{{\omega - \Omega }} \nonumber \\ {}{} & {} + i2\beta _2 (t)P\int \limits _0^\infty {d\omega } \frac{{g^2 (\omega )\cos (k_\omega d)}}{{\omega - \Omega }}, \end{aligned}$$
(A5)
$$\begin{aligned} \frac{{d\beta _2 }}{{dt}}= & {} - i\int \limits _0^\infty {d\omega } g(\omega )\gamma _0 \left( \omega \right) e^{ik_\omega d} e^{ - i(\omega - \Omega )t} \nonumber \\{} & {} - 2\pi \beta _1 (t)g^2 (\Omega )\cos (k_\Omega d) - 2\pi \beta _2 (t)g^2 (\Omega ) \nonumber \\{} & {} + i2\beta _1 (t)P\int \limits _0^\infty {d\omega } \frac{{g^2 (\omega )\cos (k_\omega d)}}{{\omega - \Omega }} \nonumber \\ {}{} & {} + i2\beta _2 (t)P \int \limits _0^\infty {d\omega } \frac{{g^2 (\omega )}}{{\omega - \Omega }}. \end{aligned}$$
(A6)

The quantity \(P\int \limits _0^\infty {d\omega } \frac{{g^2 (\omega )}}{{\omega - \Omega }}\) results in the shift of the qubit frequency \(\Omega \). We assume the shift is small and include it implicitly in the definition of \(\Omega \). As the coupling \(g(\omega )\) between qubit and the field is effective at the qubit resonance, we take it off the Cauchy principal integral in equations (A5), (A6) at the qubit resonance frequency. Then for the Cauchy principal integral we obtain:

$$\begin{aligned} P\int \limits _0^\infty {d\omega } \frac{{g^2 (\omega )\cos (k_\omega d)}}{{\omega - \Omega }}= & {} g^2 (\Omega )P\int \limits _0^\infty {d\omega } \frac{{\cos (k_\omega d)}}{{\omega - \Omega }} \nonumber \\= & {} - \pi g^2 (\Omega )\sin (k_\Omega d). \end{aligned}$$
(A7)

For two-qubit system the rate of spontaneous emission can be found from Fermi’s golden rule:

$$\begin{aligned} \Gamma = 4\pi g^2 (\Omega ). \end{aligned}$$
(A8)

Combining the equations (A7) and (A8) with equations (A5) and (A6) we obtain the equations (16) and (17) which are given in the main text.

Appendix B: Properties of sine and cosine integrals and some related integrals

Here we use the conventional definitions for sine and cosine integrals [38].

$$\begin{aligned}{} & {} \textrm{si}(xy) = - \int \limits _x^\infty {\frac{{\sin zy}}{z}} dz, \end{aligned}$$
(B1)
$$\begin{aligned}{} & {} \textrm{ci}(xy) = - \int \limits _x^\infty {\frac{{\cos zy}}{z}} dz, \end{aligned}$$
(B2)
$$\begin{aligned}{} & {} {\textrm{Si}}(xy) = \int \limits _0^x {\frac{{\sin zy}}{z}} dz, \end{aligned}$$
(B3)
$$\begin{aligned}{} & {} \int \limits _0^\infty {\frac{{\sin zy}}{z}} dz = \frac{\pi }{2}sign(y), \end{aligned}$$
(B4)

where \(\textrm{si}(xy)\) is defined on the whole real axis, while \(\textrm{ci}(xy)\) is defined only for \(x>0\).

Using these definitions it is not difficult to show that

$$\begin{aligned} \textrm{si}(xy)= & {} \textrm{Si}(xy) - \frac{\pi }{2}sign(y), \end{aligned}$$
(B5)
$$\begin{aligned} \textrm{si}( - xy)= & {} - \int \limits _{ - x}^\infty {\frac{{\sin zy}}{z}} dz = - \textrm{Si}(xy) - \frac{\pi }{2}sign(y). \end{aligned}$$
(B6)

Combining (B5) and (B6) we obtain a useful relation

$$\begin{aligned} \textrm{Si}(xy)+\textrm{Si}(-xy)=-\pi sign(y). \end{aligned}$$
(B7)

From definitions (B1), (B2), and (B3) the parity relations follow:

$$\begin{aligned} \textrm{si}(x(-y))= & {} -\textrm{si}(xy);\,\textrm{ci}(x(-y))=\textrm{ci}(xy);\nonumber \\ \textrm{Si}(x(-y))= & {} -\textrm{Si}(xy). \end{aligned}$$
(B8)

The exponential integral \(E_1(z)\) in the expression (36), is defined as follows [37]:

$$\begin{aligned} E_1(z) = \int \limits _z^\infty {\frac{{e^{-t }}}{t}} dt. \end{aligned}$$
(B9)

The behavior of scattered fields at large x and t follows from the asymptote of the exponential integral function, sine, and cosine integrals [38, 39]:

$$\begin{aligned} \textrm{si}(x)\approx -\frac{\cos (x)}{x}-\frac{\sin (x)}{x^2}; \quad \textrm{ci}(x)\approx \frac{\sin (x)}{x}-\frac{\cos (x)}{x^2},\nonumber \\ \end{aligned}$$
(B10)

where \(x\gg 1\).

$$\begin{aligned} E_1(z)\approx \frac{e^{-z}}{z}\left( 1-\frac{1}{z}\right) , \end{aligned}$$
(B11)

where \(|z|\gg 1\).

Below we illustrate the application of above formulae for the calculation of some integrals which we use throughout the paper.

$$\begin{aligned} I_2 (x,t) = \int \limits _0^\infty {d\omega } \frac{{e^{i(\omega - \omega _S )t} - 1}}{{\omega - \omega _S }}e^{i\frac{\omega }{{v_g }}\left( {x - v_g t} \right) }. \end{aligned}$$
(B12)

This integral, where \(x>0\) and \(x-v_gt<0\) describes the forward travelling wave between qubits \(0<x<d\) as well as behind the second qubit, \(x>d\).

Changing the variables in the integrand of (B12), \(z=\omega -\omega _S\), \(\tau =x/v_g\), \(T=(x-v_gt)/v_g\) we obtain

$$\begin{aligned} I_2 (x,t) = e^{i\omega _S T} \left( {\int \limits _{ - \omega _S }^\infty {dz} \frac{{e^{iz\tau } }}{z} - \int \limits _{ - \omega _S }^\infty {dz} \frac{{e^{izT} }}{z}} \right) . \end{aligned}$$
(B13)

The calculation of the first integral in (B13) yields:

$$\begin{aligned}{} & {} \int \limits _{ - \omega _S }^\infty {dz} \frac{{e^{iz\tau } }}{z} = \int \limits _{ - \omega _S }^\infty {dz} \frac{{\cos z\tau }}{z} + i\int \limits _{ - \omega _S }^\infty {dz} \frac{{\sin z\tau }}{z} \nonumber \\{} & {} \quad = \int \limits _{ - \omega _S }^{\omega _S } {dz} \frac{{\cos z\tau }}{z} + \int \limits _{\omega _S }^\infty {dz} \frac{{\cos z\tau }}{z} + i\int \limits _{ - \omega _S }^\infty {dz} \frac{{\sin z\tau }}{z} \nonumber \\{} & {} \quad = - \textrm{ci}(\omega _S \tau ) - i \,\textrm{si}( - \omega _S \tau ). \end{aligned}$$
(B14)

Similar expression we obtain for second integral in (B13):

$$\begin{aligned} \int \limits _{ - \omega _S }^\infty {dz} \frac{{e^{izT} }}{z} = - \textrm{ci}(\omega _S T) - i \,\textrm{si}( - \omega _S T). \end{aligned}$$
(B15)

Therefore, for \(I_2(x,t)\) we obtain:

$$\begin{aligned} I_2 (x,t)= & {} e^{i\omega _S T}\left( -\textrm{ci}(\omega _S\tau )-i \,\textrm{si}(-\omega _S\tau )\right. \nonumber \\{} & {} \left. +\textrm{ci}(\omega _ST)+i \,\textrm{si}(-\omega _ST)\right) . \end{aligned}$$
(B16)

Using the relation (B7) we rewrite (B16) as follows:

$$\begin{aligned} I_2 (x,t)= & {} e^{i\omega _S T}\nonumber \\{} & {} \times \left( -\textrm{ci}(\omega _S\tau )+i \,\textrm{si}(\omega _S\tau )+\textrm{ci}(\omega _ST)-i \,\textrm{si}(\omega _ST)\right) \nonumber \\{} & {} +i\pi e^{i\omega _S T}\left( sign(\tau )- sign(T)\right) . \end{aligned}$$
(B17)

Here \(\tau >0\), and \(T<0\). Therefore, we obtain:

$$\begin{aligned} I_2 (x,t)= & {} e^{i\omega _S T}\nonumber \\{} & {} \times \left( -\textrm{ci}(\omega _S\tau )+i \,\textrm{si}(\omega _S\tau )+\textrm{ci}(\omega _S|T|)+i \,\textrm{si}(\omega _S|T|)\right) \nonumber \\{} & {} +2i\pi e^{i\omega _ST}, \end{aligned}$$
(B18)

where \(\tau =x/v_g>0\), \(T=(x-v_gt)/v_g<0\).

For integral \(I_2(x-d,t)\) which describes the forward travelling wave between qubits, \(x-d<0\) we obtain from (B17), where x is replaced with \(x-d\):

$$\begin{aligned} I_2 (x-d,t)= & {} e^{i\omega _S T}\left( -\textrm{ci}(\omega _S|\tau |)-i \,\textrm{si}(\omega _S|\tau |)\right. \nonumber \\{} & {} \left. +\textrm{ci}(\omega _S|T|)+i \,\textrm{si}(\omega _S|T|)\right) , \end{aligned}$$
(B19)

where \(\tau =(x-d)/v_g<0\), \(T=(x-d-v_gt)/v_g<0\).

Next, we consider the integral (55) which describes the backward travelling wave in front of the first qubit \(x<0\).

$$\begin{aligned} J_2 (x,t) = \int \limits _0^\infty {d\omega } \frac{{e^{i(\omega - \omega _S )t} - 1}}{{\omega - \omega _S }}e^{ - i\frac{\omega }{{v_g }}\left( {x + v_g t} \right) }, \end{aligned}$$
(B20)

where \(x<0\), \(x+v_gt>0\).

The calculation of this integral is similar to that of \(I_2(x,t)\). For \(J_2(x,t\) we obtain the following result:

$$\begin{aligned} J_2 (x,t)= & {} e^{-i\omega _S T}\nonumber \\{} & {} \times \left( -\textrm{ci}(\omega _S\tau )-i \,\textrm{si}(\omega _S\tau )+\textrm{ci}(\omega _ST)+i \,\textrm{si}(\omega _ST)\right) \nonumber \\{} & {} -i\pi e^{-i\omega _S T}\left( sign(\tau )- sign(T)\right) . \end{aligned}$$
(B21)

Therefore, for \(J_2(x,t)\) we finally obtain:

$$\begin{aligned} J_2 (x,t)= & {} e^{-i\omega _S T}\nonumber \\{} & {} \times \left( -\textrm{ci}(\omega _S|\tau |)+i \,\textrm{si}(\omega _S|\tau |)+\textrm{ci}(\omega _ST)+i \,\textrm{si}(\omega _ST)\right) \nonumber \\{} & {} +2i\pi e^{-i\omega _S T}, \end{aligned}$$
(B22)

where \(\tau =x/v_g<0\), \(T=(x+v_gt)/v_g>0\).

There are two integrals which describe the backward travelling wave between qubits, \(J_2(x,t)\) where \(x>0\), and \(J_2(x-d),t\) where \(x-d<0\). The quantity \(J_2(x,t)\) with \(x>0\) follows from (B21) where \(\tau =x/v_g>0\):

$$\begin{aligned} J_2 (x,t)= & {} e^{-i\omega _S T}\left( -\textrm{ci}(\omega _S\tau )-i \,\textrm{si}(\omega _S\tau )\right. \nonumber \\{} & {} \left. +\textrm{ci}(\omega _ST)+i \,\textrm{si}(\omega _ST)\right) , \end{aligned}$$
(B23)

where \(\tau =x/v_g>0\), \(T=(x+v_gt)/v_g>0\).

The integral \(J_2(x-d,t)\) is obtained from equation (B22) where x is replaced with \(x-d\), and where \(\tau =(x-d)/v_g<0\), \(T=(x-d+v_gt)/v_g>0\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greenberg, Y.S., Shtygashev, A.A. & Moiseev, A.G. Time-dependent theory of single-photon scattering from a two-qubit system. Eur. Phys. J. B 96, 162 (2023). https://doi.org/10.1140/epjb/s10051-023-00629-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00629-5

Navigation