Skip to main content
Log in

Meso-Geometric Modeling and Failure Behavior of 2.5D Three-Harness-Twill Warp-Reinforced Woven Composites

  • Research
  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

A novel material, i.e. 2.5D three-harness-twill warp-reinforced woven composites (2.5D-THT-WR-WC), is proposed, which has wide engineering applications. In this work, geometrical relationships with different meso features are discussed through X-CT characterization. On this basis, six unit-cell models with different meso geometrical features are established considering different weft yarn arrangement densities MF, and numerical simulations are carried out combined with a developed progressive damage model. Comparison with the experimental results shows that the maximum prediction errors of modulus and strength are 6.3% and 11.7%, respectively. Therefore, the developed numerical simulation model can reasonably predict the mechanical behavior of 2.5D-THT-WR-WC. Additionally, as the MF increases, the mechanical properties in the warp and weft directions decrease and increase, respectively, owing to the inclination angle and the extrusion condition between adjacent layers of the binder yarns. This work provides a design reference for the structural application of 2.5D-THT-WR-WC, which has a significant engineering value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Zhang, Y., Tong, J., Guo, Q., Guo, J., Liu, X., Chen, L.: Hierarchical multiscale analysis for 3D woven composite leaf spring landing gear. Thin. Wall. Struct. 189, 110913 (2023)

    Article  Google Scholar 

  2. Guo, J., Wen, W., Zhang, H., Cui, H.: A mesoscale fatigue progressive damage model for 3D woven composites. Int. J. Fatigue. 152, 106455 (2021)

    Article  CAS  Google Scholar 

  3. Guo, J., Wen, W., Zhang, H., Cui, H.: Warp-loaded mechanical performance of 3D orthogonal layer-to-layer woven composite perforated structures with different apertures. Compos. Struct. 278, 114720 (2021)

    Article  Google Scholar 

  4. Zhang, H., Guo, J., Wen, W., Cui, H., He, S., Xu, Y.: Bending/tensile tests and simulations of the 2.5D woven T-shaped hooking composite structure. Compos. Struct. 206, 155–163 (2018)

    Article  Google Scholar 

  5. Wang, Y., Gong, Y., Zhang, Q., He, Y., Jiao, J., Hu, N.: Vibration fatigue properties of laminated and 2.5D woven composites: a comparative study. Int. J. Fatigue. 168, 107466 (2023)

    Article  CAS  Google Scholar 

  6. Ma, Z., Zhang, P., Zhu, J.: Review on the fatigue properties of 3D woven fiber/epoxy composites: testing and modelling strategies. J. Ind. Text. 51(5_suppl), 7755S–7795S (2022)

    Article  CAS  Google Scholar 

  7. Guo, L., Huang, J., Zhang, L., Sun, X.: Damage evolution of 3D woven carbon/epoxy composites under tension-tension fatigue loading based on synchrotron radiation computed tomography (SRCT). Int. J. Fatigue. 142, 105913 (2021)

    Article  CAS  Google Scholar 

  8. Li, D., Dang, M., Jiang, L.: Elevated temperature effect on tension fatigue behavior and failure mechanism of carbon/epoxy 3D angle-interlock woven composites. Compos. Struct. 268, 113897 (2021)

    Article  CAS  Google Scholar 

  9. Guo, L., Liao, F., Xu, Y., Wang, T., Yang, C., Yuan, J.: Experimental method and failure mechanisms investigation for out-of-plane shear fatigue behavior of 3D woven composites. Int. J. Fatigue. 134, 105501 (2020)

    Article  Google Scholar 

  10. Saboktakin, A.: 3D textile preforms and composites for aircraft structures: a review. Int. J. Aviat. Aeronaut. 6(1), 2 (2019)

    Google Scholar 

  11. Rubino, F., Nisticò, A., Tucci, F., Carlone, P.: Marine application of fiber reinforced composites: a review. J. Mar. Sci. Eng. 8(1), 26 (2020)

    Article  Google Scholar 

  12. Guo, J., Wen, W., Zhang, H., Cui, H., Song, J.: Representative cell modeling strategy of 2.5D woven composites considering the randomness of weft cross-section for mechanical properties prediction. Eng. Fract. Mech. 237, 107255 (2020)

    Article  Google Scholar 

  13. Song, J., Wen, W., Cui, H., Li, L.: Weft direction tension-tension fatigue responses of layer-to-layer 3D angle-interlock woven composites at room and elevated temperatures. Int. J. Fatigue. 139, 105770 (2020)

    Article  Google Scholar 

  14. Song, J., Wen, W., Cui, H., Wang, Y., Lu, Y., Long, W., et al.: Warp direction fatigue behavior and damage mechanisms of centrally notched 2.5D woven composites at room and elevated temperatures. Compos. Sci. Technol. 182, 107769 (2019)

    Article  CAS  Google Scholar 

  15. Song, J., Wen, W., Cui, H.: Experimental and numerical investigation of mechanical behaviors of 2.5D woven composites at ambient and un-ambient temperatures. Compos. Struct. 201, 699–720 (2018)

    Article  Google Scholar 

  16. Song, J., Wen, W., Cui, H.: Fatigue life prediction model of 2.5D woven composites at various temperatures. Chinese. J. Aeronaut. 31(2), 310–329 (2018)

    Article  Google Scholar 

  17. Song, J., Wen, W., Cui, H.: Fatigue behaviors of 2.5D woven composites at ambient and un-ambient temperatures. Compos. Struct. 166, 77–86 (2017)

    Article  Google Scholar 

  18. Song, J., Zhang, Y., Guo, X.: Thermomechanical fatigue behaviors and failure mechanism of 2.5D shallow curve-link-shaped woven composites. Compos. Struct. 284, 115080 (2022)

    Article  CAS  Google Scholar 

  19. Zhao, Y., Song, J., Wen, W., Cui, H., Li, C., Liu, S.: Thermo-mechanical behaviors of 2.5D shallow straight-link-shaped woven composites under the warp direction fatigue loading at room and elevated temperatures. Compos. Struct. 289, 115489 (2022)

    Article  CAS  Google Scholar 

  20. Verpoest, I., Lomov, S.: Virtual textile composites software: integration with micro-mechanical, permeability and structural analysis. Compos. Sci. Technol. 65(15–16), 2563–2574 (2005)

    Article  CAS  Google Scholar 

  21. Gereke, T., Cherif, C.: A review of numerical models for 3D woven composite reinforcements. Compos. Struct. 209, 60–66 (2019)

    Article  Google Scholar 

  22. Isart, N., Mayugo, J.A., Blanco, N., Ripoll, L., Solà, A., Soler, M.: Geometric model for 3D through-thickness orthogonal interlock composites. Compos. Struct. 119, 787–798 (2015)

    Article  Google Scholar 

  23. Zhou, Y., Wen, W., Cui, H.: Spatial modelling of 3D woven variable thickness composite plate at the mesoscopic scale. Compos. Struct. 239, 111946 (2020)

    Article  Google Scholar 

  24. Zhang, X., Zhang, S., Jia, Y., Liu, C., Gao, X., Wang, F., et al.: A parameterized and automated modelling method for 3D orthogonal woven composite RVEs considering yarn geometry variations. Compos. Struct. 305, 116496 (2023)

    Article  CAS  Google Scholar 

  25. Stig, F., Hallström, S.: A modelling framework for composites containing 3D reinforcement. Compos. Struct. 94(9), 2895–2901 (2012)

    Article  Google Scholar 

  26. Mahadik, Y., Hallett, S.R.: Finite element modelling of tow geometry in 3D woven fabrics. Compos. Part A-Appl S. 41(9), 1192–1200 (2010)

    Article  Google Scholar 

  27. El Said, B., Green, S., Hallett, S.R.: Kinematic modelling of 3D woven fabric deformation for structural scale features. Compos. Part. A-Appl. S. 57, 95–107 (2014)

    Article  Google Scholar 

  28. Green, S.D., Long, A.C., El Said, B.S.F., Hallett, S.R.: Numerical modelling of 3D woven preform deformations. Compos. Struct. 108, 747–756 (2014)

    Article  Google Scholar 

  29. Jia, Y., Yu, G., Du, J., Gao, X., Song, Y., Wang, F.: Adopting traditional image algorithms and deep learning to build the finite model of a 2.5D composite based on X-ray computed tomography. Compos. Struct. 275, 114440 (2021)

    Article  Google Scholar 

  30. Naouar, N., Vidal-Sallé, E., Schneider, J., Maire, E., Boisse, P.: Meso-scale FE analyses of textile composite reinforcement deformation based on X-ray computed tomography. Compos. Struct. 116, 165–176 (2014)

    Article  Google Scholar 

  31. Naouar, N., Vidal-Salle, E., Schneider, J., Maire, E., Boisse, P.: 3D composite reinforcement meso F.E. Analyses based on X-ray computed tomography. Compos. Struct. 132, 1094–1104 (2015)

    Article  Google Scholar 

  32. Guo, C., Zhang, H., Wang, Y., Jia, Y., Qi, L., Zhu, Y., et al.: Parametric modeling of 2.5D woven composites based on computer vision feature extraction. Compos. Struct. 321, 117234 (2023)

    Article  Google Scholar 

  33. Hallal, A., Younes, R., Fardoun, F., Nehme, S.: Improved analytical model to predict the effective elastic properties of 2.5D interlock woven fabrics composite. Compos. Struct. 94(10), 3009–3028 (2012)

    Article  Google Scholar 

  34. Tan, P., Tong, L., Steven, G.P.: Micromechanics models for mechanical and thermomechanical properties of 3D through-the-thickness angle interlock woven composites. Compos. Part. A-Appl. S. 30(5), 637–648 (1999)

    Article  Google Scholar 

  35. Byun, J.H., Chou, T.W.: Elastic properties of three-dimensional angle-interlock fabric preforms. J. Text. I. 81(4), 538–548 (1990)

    Google Scholar 

  36. Pochiraju, K., Chou, T.: Three-dimensionally woven and braided composites. I. A model for anisotropic stiffness prediction. Polym. Compos. 20(4), 565–580 (1999)

    Article  CAS  Google Scholar 

  37. Fang, G., Liang, J., Lu, Q., Wang, B., Wang, Y.: Investigation on the compressive properties of the three dimensional four-directional braided composites. Compos. Struct. 93(2), 392–405 (2011)

    Article  Google Scholar 

  38. Lu, H., Guo, L., Liu, G., Zhang, L.: A progressive damage model for 3D woven composites under compression. Int. J. Damage. Mech. 28(6), 857–876 (2019)

    Article  Google Scholar 

  39. Zhong, S., Guo, L., Liu, G., Lu, H., Zeng, T.: A continuum damage model for three-dimensional woven composites and finite element implementation. Compos. Struct. 128, 1–9 (2015)

    Article  Google Scholar 

  40. Zixing, L., Zhou, Y., Yang, Z., Liu, Q.: Multi-scale finite element analysis of 2.5D woven fabric composites under on-axis and off-axis tension. Comput. Mater. Sci. 79, 485–494 (2013)

    Article  Google Scholar 

  41. Li, D., Dang, M., Jiang, L.: Fatigue behavior and failure mechanisms of 3D angle-interlock woven composite at room and cryogenic temperatures under bending. Compos. Commun. 23, 100559 (2021)

    Article  Google Scholar 

  42. Liu, X., Wang, X., Zhang, D., Qian, K.: Effect of voids on fatigue damage propagation in 3D5D braided composites revealed via automated algorithms using X-ray computed tomography. Int. J. Fatigue. 158, 106778 (2022)

    Article  Google Scholar 

  43. Liu, X., Zhang, D., Mao, C., Wang, X., Qian, K.: Full-field progressive fatigue damage of 3D5D braided composites with yarn-reduction: visualization, classification, and quantification. Compos. Sci. Technol. 218, 109214 (2022)

    Article  CAS  Google Scholar 

  44. Liu, X., Zhang, D., Qiu, H., Sun, J., Mao, C., Qian, K.: On-axis fatigue behaviors and failure characterization of 3D5D braided composites with yarn-reduction using X-ray computed tomography. Compos. Sci. Technol. 203, 108585 (2021)

    Article  CAS  Google Scholar 

  45. Zhang, Y., Guo, Q., Chen, X., Xie, J., Chen, L.: Effect of apertures on tensile property of warp-reinforced 2.5D woven composites notched plates. Compos. Struct. 252, 112693 (2020)

    Article  Google Scholar 

  46. Guo, L., Liao, F., Li, Z., Huang, J., Zhao, J., Zheng, T.: Research progress in damage evolution of woven composites. Sci. Sin. Tech. 252, 876–896 (2020)

    Google Scholar 

  47. Li, S.: Research of Mechanical Properties and Strength Failure Criteria of Component Materials under Temperature Environment. Nanjing University of Aeronautics and Astronautics (2020)

    Google Scholar 

  48. Hashin, Z.: Failure criteria for unidirectional Fiber composites. J. Appl. Mech. 47, 329–334 (1980)

    Article  Google Scholar 

  49. Guo, J., Zhang, Y., Zhou, G., Wen, H., Wen, W., Zhang, H., et al.: A transverse failure criterion for unidirectional composites based on the Puck failure surface theory. Compos. Sci. Technol. 242, 110192 (2023)

    Article  Google Scholar 

  50. Wiegand, J., Petrinic, N., Elliott, B.: An algorithm for determination of the fracture angle for the three-dimensional Puck matrix failure criterion for UD composites. Compos. Sci. Technol. 68(12), 2511–2517 (2008)

    Article  Google Scholar 

  51. Guo, J., Wen, W., Zhang, H., Cui, H., Song, J., Liu, H.: Investigation of mechanical properties for 2.5D woven composites with different weft-layer-numbers by a triple-cell model system. J. Ind. Text. 51(3_suppl), 5243S–5285S (2022)

    Article  Google Scholar 

  52. Yang, H.: Research on the Strength of Three-Piece Warp-Lined 2.5D Woven Composite Material under Temperature Environment. Nanjing University of Aeronautics and Astronautics (2021)

    Google Scholar 

  53. Guo, J., Wen, W., Zhang, H., Cui, H.: Influence of notch shape on the quasi-static tensile behavior of 2.5D woven composite structure. Thin. Wall. Struct. 165, 107944 (2021)

    Article  Google Scholar 

  54. Lomov, S.V., Bogdanovich, A.E., Ivanov, D.S., Mungalov, D., Karahan, M., Verpoest, A.: A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 1: materials, methods and principal results. Compos. Part. A-Appl. S. 40, 1134–1143 (2009)

    Article  Google Scholar 

  55. Ivanov, D.S., Lomov, S.V., Bogdanovich, A.E., Karahan, M., Verpoest, I.: A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 2: comprehensive experimental results. Compos. Part. A-Appl. S. 40, 1144–1157 (2009)

    Article  Google Scholar 

  56. Jabbar, M., Nawab, Y., Karahan, M., Ashraf, M., Hussain, T.: Mechanical response of novel 3D woven flax composites with variation in z yarn binding. J. Nat. Fibers. 17(6), 890–905 (2020)

    Article  Google Scholar 

  57. Jabbar, M., Shaker, K., Nawab, Y., Umair, M.: Effect of the stuffer yarns on the mechanical performance of novel 3D woven green composites. Compos. Struct. 269, 114023 (2021)

    Article  Google Scholar 

  58. Karahan., Lomov, S.V., Bogdanovich, A.E., Mungalov, D.M., Verpoest, I.: Internal geometry evaluation of non-crimp 3D orthogonal woven carbon fabric composite. Compos. Part. A-Appl. S. 41, 1301–1311 (2010)

    Article  Google Scholar 

Download references

Funding

This work has been supported by National Science and Technology Major Project (No. 2017-IV-0007-0044), National Natural Science Foundation of China (No. 52175142).

Author information

Authors and Affiliations

Authors

Contributions

Junhua Guo: Conceptualization, Methodology, Formal analysis, Writing-original draft; Gaofeng Zhou: Formal analysis, Writing-review & editing; Huabing Wen: Validation, Supervision; Hongjian Zhang: Supervision; Haitao Cui: Visualization; Weidong Wen: Supervision; Chun Guo: Conceptualization, Writing-review & editing; Yifan Zhang: Visualization, Supervision.

Corresponding authors

Correspondence to Huabing Wen or Weidong Wen.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Zhou, G., Wen, H. et al. Meso-Geometric Modeling and Failure Behavior of 2.5D Three-Harness-Twill Warp-Reinforced Woven Composites. Appl Compos Mater 31, 669–708 (2024). https://doi.org/10.1007/s10443-023-10185-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-023-10185-x

Keywords

Navigation