Skip to main content
Log in

Electromagnetic Current Operators for Phenomenological Relativistic Models

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Phenomenological Poincaré invariant quantum mechanical models can provide an efficient description of the dynamics of strongly interacting particles that is frame independent and consistent with spectral and scattering observables. These models are representation dependent and in order to apply them to reactions with electromagnetic probes it is necessary to use a consistent electromagnetic current operator. The purpose of this work is to use local gauge invariance to construct consistent strong current operators. Current operators are constructed from a model Hamiltonian by replacing momentum operators in the Weyl representation by gauge covariant derivatives. The construction provides a systematic method to construct expressions for current operators that are consistent with relativistic models of strong interaction dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.V. Terent’ev, On the structure of the wave functions of mesons as of bound states of relativistic quarks. Yad. Fiz. 24(1), 207–213 (1976)

    Google Scholar 

  2. V.B. Berestetskii, M.V. Terent’ev, Light-front dynamics and nucleons made of relativistic quarks. Yad. Fiz. 24(5), 1044–1057 (1976)

    CAS  Google Scholar 

  3. W. Glockle, T.S.H. Lee, F. Coester, Relativistic effects in three-body bound states. Phys. Rev. C 33, 709–716 (1986). https://doi.org/10.1103/PhysRevC.33.709

    Article  ADS  CAS  Google Scholar 

  4. M.G. Fuda, Relativistic quantum mechanics and the quark-pair creation model. Phys. Rev. C 86, 055205 (2012). https://doi.org/10.1103/PhysRevC.86.055205

    Article  ADS  CAS  Google Scholar 

  5. B.D. Keister, Front-form Hamiltonian dynamics of deuteron electrodisintegration. Phys. Rev. C 37, 1765–1767 (1988). https://doi.org/10.1103/PhysRevC.37.1765

    Article  ADS  CAS  Google Scholar 

  6. P.L. Chung, W.N. Polyzou, F. Coester, B.D. Keister, Hamiltonian light front dynamics of elastic electron deuteron scattering. Phys. Rev. C 37, 2000–2015 (1988). https://doi.org/10.1103/PhysRevC.37.2000

    Article  ADS  CAS  Google Scholar 

  7. P.L. Chung, B.D. Keister, F. Coester, Relativistic calculation of the deuteron quadrupole and magnetic moments. Phys. Rev. C 39, 1544–1549 (1989). https://doi.org/10.1103/PhysRevC.39.1544

    Article  ADS  CAS  Google Scholar 

  8. F. Cardarelli, E. Pace, G. Salme, S. Simula, Nucleon and pion electromagnetic form-factors in a light front constituent quark model. Phys. Lett. B 357, 267–272 (1995). https://doi.org/10.1016/0370-2693(95)00921-7

    Article  ADS  CAS  Google Scholar 

  9. W.N. Polyzou, W. Glöckle, Scaling for deuteron structure functions in a relativistic light front model. Phys. Rev. C 53, 3111–3130 (1996). https://doi.org/10.1103/PhysRevC.53.3111

    Article  ADS  CAS  Google Scholar 

  10. T. Frederico, R.-W. Schulze, Light-front pion exchange in elastic electron–deuteron scattering. Phys. Rev. C 54(5), 2201–2217 (1996). https://doi.org/10.1103/PhysRevC.54.2201

    Article  ADS  CAS  Google Scholar 

  11. A.F. Krutov, Electroweak properties of light mesons in the relativistic model of constituent quarks. Phys. Atom. Nucl. 60, 1305–1313 (1997)

    ADS  Google Scholar 

  12. F.M. Lev, E. Pace, G. Salmè, Poincaré covariant current operator and elastic electron–deuteron scattering in the front-form Hamiltonian dynamics. Phys. Rev. C 62(6), 064004 (2000). https://doi.org/10.1103/PhysRevC.62.064004

    Article  ADS  Google Scholar 

  13. R.F. Wagenbrunn, S. Boffi, W. Klink, W. Plessas, M. Radici, Covariant nucleon electromagnetic form factors from the Goldstone-boson exchange quark model. Phys. Lett. B 511, 33–39 (2001). https://doi.org/10.1016/S0370-2693(01)00622-0

    Article  ADS  CAS  Google Scholar 

  14. B. Julia-Diaz, D.O. Riska, F. Coester, Baryon form factors of relativistic constituent-quark models. Phys. Rev. C 69, 035212 (2004). https://doi.org/10.1103/PhysRevC.69.035212

    Article  ADS  CAS  Google Scholar 

  15. F. Coester, W.N. Polyzou, Charge form factors of quark-model pions II (2004). arXiv:nucl-th/0405082

  16. T. Lin, C. Elster, W.N. Polyzou, W. Glockle, Relativistic effects in exclusive pd breakup scattering at intermediate energies. Phys. Lett. B 660, 345–349 (2008). https://doi.org/10.1016/j.physletb.2008.01.012

    Article  ADS  CAS  Google Scholar 

  17. T. Lin, C. Elster, W.N. Polyzou, H. Witala, W. Glockle, Poincaré invariant three-body scattering at intermediate energies. Phys. Rev. C 78, 024002 (2008). https://doi.org/10.1103/PhysRevC.78.024002. arXiv:0801.3210 [nucl-th]

    Article  ADS  CAS  Google Scholar 

  18. Y. Huang, W.N. Polyzou, Exchange current contributions in null-plane quantum models of elastic electron deuteron scattering. Phys. Rev. C 80, 025503 (2009). https://doi.org/10.1103/PhysRevC.80.025503. arXiv:0812.2180 [nucl-th]

    Article  ADS  CAS  Google Scholar 

  19. M.G. Fuda, F. Bulut, Three-particle model of the pion–nucleon system. Phys. Rev. C 80, 024002 (2009). https://doi.org/10.1103/PhysRevC.80.024002

    Article  ADS  CAS  Google Scholar 

  20. H. Witala et al., Relativistic effects in 3N reactions. Mod. Phys. Lett. A 24, 871–874 (2009). https://doi.org/10.1142/S0217732309000206

    Article  ADS  CAS  Google Scholar 

  21. B. Desplanques, RQM description of the charge form factor of the pion and its asymptotic behavior. Eur. Phys. J. A 42, 219–236 (2009). https://doi.org/10.1140/epja/i2009-10864-8. arXiv:0906.1889 [nucl-th]

    Article  ADS  CAS  Google Scholar 

  22. S.K. Kunhammed, W.N. Polyzou, Simple relativistic quark models. Phys. Rev. C 102, 065209 (2020). https://doi.org/10.1103/PhysRevC.102.065209

    Article  ADS  CAS  Google Scholar 

  23. V.D. Koshmanenko, Structure of the general solution of the inverse scattering problem in an abstract formulation. Ukr. Math. J. 32, 344–350 (1980)

    Article  Google Scholar 

  24. H. Baumgärtel, M. Wollenberg, Mathematical Scattering Theory (Springer, Berlin, 1983)

    Book  Google Scholar 

  25. S.N. Sokolov, Dokl. Akad. Nauk SSSR 233, 575 (1977)

    MathSciNet  Google Scholar 

  26. F. Coester, W.N. Polyzou, Relativistic quantum mechanics of particles with direct interactions. Phys. Rev. D 26, 1348–1367 (1982). https://doi.org/10.1103/PhysRevD.26.1348

    Article  ADS  MathSciNet  CAS  Google Scholar 

  27. H. Ekstein, Equivalent Hamiltonians in scattering theory. Phys. Rev. 117, 1590 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  28. E.P. Wigner, On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40, 149–204 (1939)

    Article  ADS  MathSciNet  Google Scholar 

  29. W.N. Polyzou, Equivalent Hamiltonians. Phys. Rev. C 82, 014002 (2010). https://doi.org/10.1103/PhysRevC.82.014002

    Article  ADS  CAS  Google Scholar 

  30. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Westview, Boulder, CO, 1995). p. 483. https://cds.cern.ch/record/257493

  31. M. Reed, B. Simon, Methods of Modern Mathematical Physics, vol. I (Academic Press, San Diego, 1980), p.295

    Google Scholar 

  32. J. Neumann, die eindeutigkeit der schrödingerschen operatoren. Mathematische Annalen 104, 570 (1931)

    Article  MathSciNet  Google Scholar 

  33. M.H. Stone, On one-parameter unitary groups in Hilbert space. Ann. Math. 33(3), 643–648 (1932)

    Article  MathSciNet  Google Scholar 

  34. J. Neumann, Ueber einen satz von herrn mh stone. Ann. Math. 33, 567 (1932)

    Article  MathSciNet  Google Scholar 

  35. M. Reed, B. Simon, Methods of Modern Mathematical Physics, Scattering Theory, vol. III. (Academic Press, New York, 1979), p.317

    Google Scholar 

  36. J. Schwinger, B.-G. Englert, Quantum Mechanics Symbolism of Atomic Measurements, vol. 1 (Springer, New York, 2001)

    Google Scholar 

  37. T.D. Newton, E.P. Wigner, Localized states for elementary systems. Rev. Mod. Phys. 21, 400–406 (1949). https://doi.org/10.1103/RevModPhys.21.400

    Article  ADS  Google Scholar 

  38. B.D. Keister, W.N. Polyzou, Relativistic Hamiltonian dynamics in nuclear and particle physics. Adv. Nucl. Phys. 20, 225–479 (1991)

    CAS  Google Scholar 

  39. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, An accurate nucleon–nucleon potential with charge independence breaking. Phys. Rev. C 51, 38–51 (1995). https://doi.org/10.1103/PhysRevC.51.38. arXiv:nucl-th/9408016

    Article  ADS  CAS  Google Scholar 

  40. M.H. Partovi, Nonlocal gauge theories. Phys. Rev. Lett. 49, 528–531 (1982). https://doi.org/10.1103/PhysRevLett.49.528

    Article  ADS  CAS  Google Scholar 

  41. H. Georgi, Lie Algebras in Particle Physics (Westview Press, Boulder, 1999), p.54

    Google Scholar 

  42. B. Bakamjian, L.H. Thomas, Relativistic particle dynamics. Phys. Rev. 92, 1300–1310 (1953). https://doi.org/10.1103/PhysRev.92.1300

    Article  ADS  MathSciNet  Google Scholar 

  43. W.N. Polyzou, Relativistic Quantum Mechanics of N Particles—The Clebsch-Gordan Method (2002). arXiv:nucl-th/0201013

  44. H.J. Melosh, Quarks: currents and constituents. Phys. Rev. D 9, 1095–1112 (1974). https://doi.org/10.1103/PhysRevD.9.1095

    Article  ADS  CAS  Google Scholar 

  45. S.N. Sokolov, Relativistic addition of direct interactions in the point form of dynamics. Theor. Math. Phys. 36, 682 (1979). https://doi.org/10.1007/BF01036481

    Article  Google Scholar 

  46. W.N. Polyzou, Relativistic quantum mechanics-particle production and cluster properties. Phys. Rev. C 68, 015202 (2003). https://doi.org/10.1103/PhysRevC.68.015202. arXiv:nucl-th/0302023

    Article  ADS  CAS  Google Scholar 

  47. P.A.M. Dirac, Forms of relativistic dynamics. Rev. Mod. Phys. 21, 392–399 (1949). https://doi.org/10.1103/RevModPhys.21.392

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

This work has one author

Corresponding author

Correspondence to W. N. Polyzou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Expressions (37) and (38) for the two-body currents associated with the operators \((\textbf{L}\cdot \textbf{S})^2\) and \((\textbf{L}\cdot \textbf{L})\) in non-relativistic interactions are derived in this appendix. The construction of these current operators is similar to the construction used in the \(\textbf{L}\cdot \textbf{S}\) case. The main difference is that these contributions involve products of covariant derivatives. The current is the coefficient of the vector potential.

The interactions before replacing the derivatives by covariant derivatives are

$$\begin{aligned}{} & {} v_{(\textbf{L}\cdot \textbf{S})^2}(\vert \textbf{q} \vert ) (\textbf{L}\cdot \textbf{S})^2 = v_{(\textbf{L}\cdot \textbf{S})^2}(\vert \textbf{q} \vert ) (\textbf{S} \times \textbf{q})\cdot \textbf{p} (\textbf{S} \times \textbf{q})\cdot \textbf{p} \nonumber \\{} & {} \quad = v_{(\textbf{L}\cdot \textbf{S})^2}(\vert \textbf{q} \vert )[ \sum _{ij}(\textbf{S} \times \textbf{q})_i (\textbf{S} \times \textbf{q})_j p_ip_j +i (\textbf{S} \times \textbf{q}) \cdot (\textbf{S} \times \textbf{p})] \end{aligned}$$
(106)

and

$$\begin{aligned} v_{\textbf{L}\cdot \textbf{L}}(\vert \textbf{q} \vert ) \textbf{L}\cdot \textbf{L} = v_{\textbf{L}\cdot \textbf{L}}(\vert \textbf{q} \vert )[ \textbf{q}^2 \textbf{p}^2 - \textbf{q} \cdot (\textbf{q} \cdot \textbf{p}) \textbf{p} + 2 i \textbf{q} \cdot \textbf{p}]. \end{aligned}$$
(107)

where in these expressions the canonical commutation relations are used to move the momentum operators to the right of the coordinate operators.

In order to extract the current it is useful to express (106) and (107) in terms of single-particle variables, where minimal substitution is straightforward:

$$\begin{aligned}{} & {} v_{(\textbf{L}\cdot \textbf{S})^2}(\vert \textbf{q} \vert ) (\textbf{L}\cdot \textbf{S})^2 \nonumber \\{} & {} \quad = \sum _{ij}v_{(\textbf{L}\cdot \textbf{S})^2}(\vert \textbf{q}_1-\textbf{q}_2 \vert )[ (\textbf{S} \times (\textbf{q}_1-\textbf{q}_2))_i (\textbf{S} \times (\textbf{q}_1-\textbf{q}_2))_j {(\textbf{p}_1 - \textbf{p}_2)_i \over 2}{(\textbf{p}_1 - \textbf{p}_2)_j \over 2} \nonumber \\{} & {} \quad +{i\over 2} (\textbf{S} \times (\textbf{q}_1- \textbf{q}_2)) \cdot (\textbf{S} \times (\textbf{p}_1 -\textbf{p}_2))] \end{aligned}$$
(108)

and

$$\begin{aligned}{} & {} v_{\textbf{L}\cdot \textbf{L}}(\vert \textbf{q}_1-\textbf{q}_2 \vert ) \textbf{L}\cdot \textbf{L} \nonumber \\{} & {} \quad = v_{\textbf{L}\cdot \textbf{L}}(\vert \textbf{q}_1-\textbf{q}_2 \vert )[ {1 \over 4}(\textbf{q}_1-\textbf{q}_2)^2 (\textbf{p}_1-\textbf{p}_2)^2 \nonumber \\{} & {} \quad - {1 \over 4}(\textbf{q}_1-\textbf{q}_2) \cdot ((\textbf{q}_1-\textbf{q}_2) \cdot (\textbf{p}_1-\textbf{p}_2))( \textbf{p}_1-\textbf{p}_2) + i (\textbf{q}_1 -\textbf{q}_2) \cdot (\textbf{p}_1- \textbf{p}_2)]. \end{aligned}$$
(109)

These are operator expressions. Replacing the space derivatives by covariant derivatives is equivalent to replacing \(\textbf{p}_i\) by \(\textbf{p}_i -e_i \textbf{A}(\textbf{q}_i)\), maintaining the correct operator ordering. This substitution results in the gauge invariant operators

$$\begin{aligned}{} & {} v_{(\textbf{L}\cdot \textbf{S})^2}(\vert \textbf{q} \vert ) (\textbf{L}\cdot \textbf{S})^2 \nonumber \\{} & {} \quad \rightarrow v_{(\textbf{L}\cdot \textbf{S})^2}(\vert \textbf{q}_1-\textbf{q}_2 \vert ) \left[ {1 \over 4} \sum _{ij} (\textbf{S} \times (\textbf{q}_1-\textbf{q}_2))_i (\textbf{S} \times (\textbf{q}_1-\textbf{q}_2))_j \right. \nonumber \\{} & {} \quad \left. \times (\textbf{p}_1 -e_1 \textbf{A}(\textbf{q}_1) - \textbf{p}_2 +e_2 \textbf{A}(\textbf{q}_2))_i (\textbf{p}_1 -e_1 \textbf{A}(\textbf{q}_1) - \textbf{p}_2 +e_2 \textbf{A}(\textbf{q}_2))_j \right. \nonumber \\{} & {} \quad + \left. {i\over 2} (\textbf{S} \times (\textbf{q}_1- \textbf{q}_2)) \cdot (\textbf{S} \times {(\textbf{p}_1 -e_1 \textbf{A}(\textbf{q}_1) - \textbf{p}_2 +e_2 \textbf{A}(\textbf{q}_2))} \right] \end{aligned}$$
(110)

and

$$\begin{aligned}{} & {} v_{\textbf{L}\cdot \textbf{L}}(\vert \textbf{q}_1-\textbf{q}_2 \vert ) \textbf{L}\cdot \textbf{L} \rightarrow v_{\textbf{L}\cdot \textbf{L}}(\vert \textbf{q}_1-\textbf{q}_2 \vert ) \nonumber \\{} & {} \quad \times \left[ {1 \over 4}(\textbf{q}_1-\textbf{q}_2)^2 {(\textbf{p}_1 -e_1 \textbf{A}(\textbf{q}_1) - \textbf{p}_2 +e_2 \textbf{A}(\textbf{q}_2))}\cdot {(\textbf{p}_1 -e_1 \textbf{A}(\textbf{q}_1) - \textbf{p}_2 +e_2 \textbf{A}(\textbf{q}_2))} \right. \nonumber \\{} & {} \quad - {1 \over 4}(\textbf{q}_1-\textbf{q}_2) \cdot [(\textbf{q}_1-\textbf{q}_2) \cdot {(\textbf{p}_1 -e_1 \textbf{A}(\textbf{q}_1) - \textbf{p}_2 +e_2 \textbf{A}(\textbf{q}_2)) } \cdot {(\textbf{p}_1 -e_1 \textbf{A}(\textbf{q}_1) - \textbf{p}_2 +e_2 \textbf{A}(\textbf{q}_2)) } \nonumber \\{} & {} \quad \left. + i (\textbf{q}_1 -\textbf{q}_2) \cdot {(\textbf{p}_1 -e_1 \textbf{A}(\textbf{q}_1) - \textbf{p}_2 +e_2 \textbf{A}(\textbf{q}_2))} \right] . \end{aligned}$$
(111)

Keeping only the terms that are linear in \(\textbf{A}\) in (110) and (111) and expressing the result in terms of the total and relative momenta and their conjugate coordinates gives:

$$\begin{aligned}{} & {} \quad (110)\rightarrow v_{(\textbf{L}\cdot \textbf{S})^2}(\vert \textbf{q}_1-\textbf{q}_2 \vert ) \nonumber \\{} & {} \quad \times \left[ -{1 \over 2} (\textbf{S} \times \textbf{q})_i (\textbf{S} \times \textbf{q})_j \{ \textbf{p}_i (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) -e_2\textbf{A}((\textbf{Q}-{\textbf{q}\over 2}))_j \right. \nonumber \\{} & {} \quad + \left. (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) -e_2\textbf{A}(\textbf{Q}-{\textbf{q}\over 2}))_i \textbf{p}_j\} \right. \nonumber \\{} & {} \quad + \left. -{i\over 2} (\textbf{S} \times \textbf{q}) \cdot (\textbf{S} \times (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) - e_2\textbf{A} (\textbf{Q}-{\textbf{q}\over 2})) \right] \end{aligned}$$
(112)

and

$$\begin{aligned}{} & {} (111)\rightarrow v_{\textbf{L}\cdot \textbf{L}}(\vert \textbf{q} \vert )\left\{ -{1 \over 2}\textbf{q}^2 \left[ (\textbf{p}\cdot ( e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) - e_2\textbf{A}(\textbf{Q}-{\textbf{q}\over 2})) + \right. \right. \nonumber \\{} & {} \quad \left. \left. (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) - e_2\textbf{A}(\textbf{Q}-{\textbf{q}\over 2})) \cdot \textbf{p}) \right] \right. \nonumber \\{} & {} \quad + {1 \over 2}\{ \textbf{q} \cdot (\textbf{q} \cdot \textbf{p}) \cdot (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2})- e_2\textbf{A}(\textbf{Q}-{\textbf{q}\over 2})) + {1 \over 2}\textbf{q} \cdot (\textbf{q} \cdot (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2})- e_2\textbf{A}(\textbf{Q}-{\textbf{q}\over 2}) \textbf{p} \} \nonumber \\{} & {} \quad \left. \left. -i \textbf{q} \cdot ( e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) -e_2 \textbf{A}(\textbf{Q}-{\textbf{q}\over 2}) \right] \right\} \end{aligned}$$
(113)

where in (112) \(\textbf{p}_i\) represents the i-th component of the relative momentum rather than the momentum of particle i The next step is to use the commutation relations to move the \(\textbf{p}\) factors to the right of all of the coordinate factors. There are three terms in (112) and (113) where the momenta are on the left of some of the coordinate operators. These terms are:

$$\begin{aligned}{} & {} \textbf{p}_i (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) -e_2\textbf{A}((\textbf{Q}-{\textbf{q}\over 2}))_j = \nonumber \\{} & {} \quad (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) -e_2\textbf{A}((\textbf{Q}-{\textbf{q}\over 2}))_j \textbf{p}_i - {i \over 2} \partial _{Qi} (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) +e_2\textbf{A}(\textbf{Q}-{\textbf{q}\over 2}))_j \end{aligned}$$
(114)
$$\begin{aligned}{} & {} \quad -{1 \over 2}\textbf{q}^2 \textbf{p}\cdot (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) - e_2\textbf{A}(\textbf{Q}-{\textbf{q}\over 2})) \nonumber \\{} & {} \quad = -{1 \over 2}\textbf{q}^2 (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) - e_2\textbf{A}(\textbf{Q}-{\textbf{q}\over 2})) \cdot \textbf{p} +i{1 \over 4}\textbf{q}^2 \pmb {\nabla }_Q\cdot (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) + e_2\textbf{A}(\textbf{Q}-{\textbf{q}\over 2})), \end{aligned}$$
(115)
$$\begin{aligned}{} & {} \quad {1 \over 2}\{ \textbf{q} \cdot (\textbf{q} \cdot \textbf{p}) \cdot (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2})- e_2\textbf{A}(\textbf{Q}-{\textbf{q}\over 2})) \nonumber \\{} & {} \quad = {1 \over 2}\{ \textbf{q} \cdot (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2})- e_2\textbf{A}(\textbf{Q}-{\textbf{q}\over 2})) (\textbf{q} \cdot \textbf{p}) -i{1 \over 4}\{ \textbf{q} \cdot (\textbf{q} \cdot \pmb {\nabla }_Q) (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2})+ e_2\textbf{A}(\textbf{Q}-{\textbf{q}\over 2})). \nonumber \\ \end{aligned}$$
(116)

Using these identities in the operator expressions (112) and (113) above gives

$$\begin{aligned}{} & {} (112) \nonumber \\{} & {} \quad = v_{(\textbf{L}\cdot \textbf{S})^2}(\vert \textbf{q} \vert ) \left[ -{1 \over 2} (\textbf{S} \times \textbf{q})_i (\textbf{S} \times \textbf{q})_j \{ (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) -e_2\textbf{A}(\textbf{Q}-{\textbf{q}\over 2}))_j \textbf{p}_i \right. \nonumber \\{} & {} \quad + (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) -e_2\textbf{A}(\textbf{Q}-{\textbf{q}\over 2}))_i\textbf{p}_j \nonumber \\{} & {} \quad - {i \over 2} ((e_1\partial _{iQ} \textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) +e_2\partial _{iQ}\textbf{A}(\textbf{Q}-{\textbf{q}\over 2}))_j \} \nonumber \\{} & {} \quad \left. -{i\over 2} (\textbf{S} \times \textbf{q}) \cdot (\textbf{S} \times (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) - e_2\textbf{A} (\textbf{Q}-{\textbf{q}\over 2})) \right] \end{aligned}$$
(117)

and

$$\begin{aligned}{} & {} (113) \nonumber \\{} & {} \quad = v_{\textbf{L}\cdot \textbf{L}}(\vert \textbf{q} \vert )\left[ -{1 \over 2}\textbf{q}^2 ( 2 (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) - e_2\textbf{A}(\textbf{Q}-{\textbf{q}\over 2})) \cdot \textbf{p}) \right. \nonumber \\{} & {} \quad +i{1 \over 4}\textbf{q}^2 (e_1\pmb {\nabla }\cdot \textbf{A}(\textbf{Q}+{\textbf{q}\over 2})+ e_2\pmb {\nabla }\cdot \textbf{A}(\textbf{Q}-{\textbf{q}\over 2})) \nonumber \\{} & {} \quad + \{ \textbf{q} \cdot (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2})- e_2\textbf{A}(\textbf{Q}-{\textbf{q}\over 2}))(\textbf{q} \cdot \textbf{p}) -i{1 \over 4}\{ \textbf{q} \cdot (\textbf{q} \cdot \pmb {\nabla }_Q) (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) e_2\textbf{A}(\textbf{Q}-{\textbf{q}\over 2})) \nonumber \\{} & {} \quad \left. + -i \textbf{q} \cdot ( e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) - e_2\textbf{A}(\textbf{Q}-{\textbf{q}\over 2}) \right] . \end{aligned}$$
(118)

Since the momentum operators are to the right of the coordinate operators, the operators become numbers in a mixed coordinate-momentum basis. The mixed matrix elements of (117) and (118) are

$$\begin{aligned}{} & {} \langle \textbf{Q},\textbf{q} \vert (117)\vert \textbf{P},\textbf{p} \rangle \nonumber \\{} & {} \quad = v_{(\textbf{L}\cdot \textbf{S})^2}(\vert \textbf{q} \vert ) {1 \over (2\pi )^3} e^{i \textbf{Q}\cdot \textbf{P} + i \textbf{q}\cdot \textbf{p}} \left[ - (\textbf{S}\times \textbf{q})_i (\textbf{S}\times \textbf{q})_j \left\{ p_i (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) -e_2\textbf{A}((\textbf{Q}-{\textbf{q}\over 2}))_j \right. \right. \nonumber \\{} & {} \quad \left. {i \over 4} (e_1\partial _{iQ} \textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) +e_2\partial _{iQ}\textbf{A}(\textbf{Q}-{\textbf{q}\over 2}))_j \right\} \nonumber \\{} & {} \quad \left. -{i\over 2} (\textbf{S} \times \textbf{q}) \cdot (\textbf{S} \times (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) - e_2\textbf{A} (\textbf{Q}-{\textbf{q}\over 2})) \right] \end{aligned}$$
(119)

and

$$\begin{aligned}{} & {} \langle \textbf{Q},\textbf{q} \vert (118)\vert \textbf{P},\textbf{p} \rangle \nonumber \\{} & {} \quad = v_{\textbf{L}\cdot \textbf{L}}(\vert \textbf{q} \vert ) {1 \over (2\pi )^3} e^{i \textbf{Q}\cdot \textbf{P} + i \textbf{q}\cdot \textbf{p}} \left[ -\textbf{q}^2 ( e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2} - e_2 \textbf{A}(\textbf{Q}-{\textbf{q}\over 2})) \cdot \textbf{p} \right. \nonumber \\{} & {} \quad \left. +{i \over 4}\textbf{q}^2 (e_1\pmb {\nabla }_Q\cdot \textbf{A}(\textbf{Q}+{\textbf{q}\over 2})+ e_2\pmb {\nabla }_Q\cdot \textbf{A}(\textbf{Q}-{\textbf{q}\over 2})) \right. \nonumber \\{} & {} \quad + (\textbf{q} \cdot \textbf{p}) \textbf{q} \cdot (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2})- e_2\textbf{A}(\textbf{Q}-{\textbf{q}\over 2})) \nonumber \\{} & {} \quad -{i \over 4}\{ \textbf{q} \cdot (\textbf{q} \cdot \pmb {\nabla }_Q) (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2})+ e_2\textbf{A}(\textbf{Q}-{\textbf{q}\over 2})) \nonumber \\{} & {} \quad \left. -i \textbf{q} \cdot ( e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) - e_2\textbf{A}(\textbf{Q}-{\textbf{q}\over 2}) \right] . \end{aligned}$$
(120)

Next change the final variables to momentum variables. With this change these expressions become

$$\begin{aligned}{} & {} \langle \textbf{P}',\textbf{p}' \vert (117) \vert \textbf{P}',\textbf{p}' \rangle \nonumber \\{} & {} \quad = \int d\textbf{q} d \textbf{Q} v_{(\textbf{L}\cdot \textbf{S})^2}(\vert \textbf{q} \vert ) {1 \over (2\pi )^6} e^{i \textbf{Q}\cdot (\textbf{P}-\textbf{P}') + i \textbf{q}\cdot (\textbf{p}-\textbf{p}')} \nonumber \\{} & {} \qquad \times \left[ - (\textbf{S} \times \textbf{q})\cdot \textbf{p} (\textbf{S} \times \textbf{q}) \cdot \{ (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) -e_2\textbf{A}((\textbf{Q}-{\textbf{q}\over 2})) \right. \nonumber \\{} & {} \qquad -\sum _{ij} {i\over 4}(\textbf{S} \times \textbf{q})_i (\textbf{S} \times \textbf{q})_j (e_1\partial _i \textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) +e_2\partial _i\textbf{A}(\textbf{Q}-{\textbf{q}\over 2}))_j \nonumber \\{} & {} \qquad \left. -{i\over 2}(\textbf{S}^2 \textbf{q}- (\textbf{q}\cdot \textbf{S}) \textbf{S} )\cdot (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) - e_2\textbf{A} (\textbf{Q}-{\textbf{q}\over 2})) \right] . \end{aligned}$$
(121)

and

$$\begin{aligned}{} & {} \langle \textbf{P}',\textbf{p}' \vert (118) \vert \textbf{P}',\textbf{p}' \rangle \nonumber \\{} & {} \quad = \int d\textbf{q} d \textbf{Q} v_{\textbf{L}\cdot \textbf{L}}(\vert \textbf{q} \vert ) {1 \over (2\pi )^6} e^{i \textbf{Q}\cdot (\textbf{P}-\textbf{P}') + i \textbf{q}\cdot (\textbf{p}-\textbf{p}')} \nonumber \\{} & {} \qquad \times \left[ -\textbf{q}^2 (\textbf{p}\cdot (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) - e_2\textbf{A}(\textbf{Q}-{\textbf{q}\over 2})) +{i \over 4}\textbf{q}^2 (e_1\pmb {\nabla }_Q\cdot \textbf{A}(\textbf{Q}+{\textbf{q}\over 2})+ e_2\pmb {\nabla }_Q\cdot \textbf{A})\textbf{Q}-{\textbf{q}\over 2}) )\right. \nonumber \\{} & {} \qquad + \{ \cdot (\textbf{q} \cdot \textbf{p}) \textbf{q} \cdot (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2})- e_2\textbf{A}(\textbf{Q}-{\textbf{q}\over 2})) {i \over 4}\{ \textbf{q} \cdot (\textbf{q} \cdot \pmb {\nabla }) (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2})+ e_2\textbf{A}(\textbf{Q}-{\textbf{q}\over 2})) \nonumber \\{} & {} \qquad \left. -i \textbf{q} \cdot ( e_1 \textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) -e_2 \textbf{A}(\textbf{Q}-{\textbf{q}\over 2}) \right] . \end{aligned}$$
(122)

In (121) and (122) the derivatives can be removed from the vector potential by integrating by parts, assuming no contribution from the boundary terms.

The three terms in these expressions with derivatives on the vector potential are

$$\begin{aligned}{} & {} {i \over 4}{1 \over (2\pi )^6}\sum _{ij} v_{(\textbf{L}\cdot \textbf{S})^2}(\vert \textbf{q} \vert ) e^{i \textbf{Q}\cdot (\textbf{P}-\textbf{P}') + i \textbf{q}\cdot (\textbf{p}-\textbf{p}')} (\textbf{S} \times \textbf{q})_i (\textbf{S} \times \textbf{q})_j \nonumber \\{} & {} \quad \times (e_1\partial _i \textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) +e_2\partial _i\textbf{A}(\textbf{Q}-{\textbf{q}\over 2}))_j \} \end{aligned}$$
(123)
$$\begin{aligned}{} & {} \quad {i \over 4}{1 \over (2\pi )^6} \int d\textbf{q} d \textbf{Q} v_{\textbf{L}\cdot \textbf{L}}(\vert \textbf{q} \vert ) e^{i \textbf{Q}\cdot (\textbf{P}-\textbf{P}') + i \textbf{q}\cdot (\textbf{p}-\textbf{p}')} \textbf{q}^2 \nonumber \\{} & {} \quad \times (e_1\pmb {\nabla }\cdot \textbf{A}(\textbf{Q}+{\textbf{q}\over 2})+ e_2\pmb {\nabla }\cdot \textbf{A}(\textbf{Q}-{\textbf{q}\over 2}) ) \end{aligned}$$
(124)

and

$$\begin{aligned}{} & {} -{i \over 4}{1 \over (2\pi )^6} \int d\textbf{q} d \textbf{Q} v_{\textbf{L}\cdot \textbf{L}}(\vert \textbf{q} \vert ) e^{i \textbf{Q}\cdot (\textbf{P}-\textbf{P}') + i \textbf{q}\cdot (\textbf{p}-\textbf{p}')} \{ \textbf{q} \cdot (\textbf{q} \cdot \pmb {\nabla }) \nonumber \\{} & {} \quad (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2})+ e_2\textbf{A}(\textbf{Q}-{\textbf{q}\over 2})). \end{aligned}$$
(125)

The partial derivatives in (123-125) are derivatives of the argument of the vector potential, equivalently with respect to the \(\textbf{Q}\) variables. They can be replaced by \(\pm 2\partial _{q_i}\)

$$\begin{aligned}{} & {} -{ie \over 2}{1 \over (2\pi )^6} \sum _{ij} \int d\textbf{q} d \textbf{Q} (\partial _{q_i} [ v_{(\textbf{L}\cdot \textbf{S})^2}(\vert \textbf{q} \vert ) e^{i \textbf{Q}\cdot (\textbf{P}-\textbf{P}') + i \textbf{q}\cdot (\textbf{p}-\textbf{p}')} (\textbf{S} \times \textbf{q})_i (\textbf{S} \times \textbf{q})_j] \nonumber \\{} & {} \quad \times (e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2}) - e_2\textbf{A}(\textbf{Q}-{\textbf{q}\over 2}))_j \end{aligned}$$
(126)
$$\begin{aligned}{} & {} \quad -{i \over 2}{1 \over (2\pi )^6} \int d\textbf{q} d \textbf{Q} \pmb {\nabla }_q [ v_{\textbf{L}\cdot \textbf{L}}(\vert \textbf{q} \vert ) {1 \over (2\pi )^6} e^{i \textbf{Q}\cdot (\textbf{P}-\textbf{P}') + i \textbf{q}\cdot (\textbf{p}-\textbf{p}')} \textbf{q}^2 ]\cdot \left( e_1\textbf{A}(\textbf{Q}+{\textbf{q}\over 2})- e_2\textbf{A}(\textbf{Q}-{\textbf{q}\over 2}) \right) \end{aligned}$$
(127)
$$\begin{aligned}{} & {} \quad {i \over 2}{1 \over (2\pi )^6} \int d\textbf{q} d \textbf{Q} \pmb {\nabla }_q [\cdot \textbf{q} v_{\textbf{L}\cdot \textbf{L}}(\vert \textbf{q} \vert ) e^{i \textbf{Q}\cdot (\textbf{P}-\textbf{P}') + i \textbf{q}\cdot (\textbf{p}-\textbf{p}')} \textbf{q} ]\cdot (e_1\textbf{A}(\textbf{Q}-{\textbf{q}\over 2})- e_2\textbf{A}(\textbf{Q}-{\textbf{q}\over 2})). \end{aligned}$$
(128)

Using (126128) and the identities

$$\begin{aligned} \left( e_1\textbf{A}\left( \textbf{Q}+{\textbf{q}\over 2}\right) - e_2\textbf{A}(\textbf{Q}-{\textbf{q}\over 2})\right) = \int d\textbf{x} (e_1\delta (\textbf{x} -\textbf{Q}-{\textbf{q}\over 2})- \delta (\textbf{x} -e_2\textbf{Q}+{\textbf{q}\over 2})) A(\textbf{x},0) \end{aligned}$$
(129)

and

$$\begin{aligned}{} & {} \int d\textbf{Q} e^{i \textbf{Q}\cdot (\textbf{P}-\textbf{P}')} (e_1\delta (\textbf{x} -\textbf{Q}-{\textbf{q}\over 2})- e_2\delta (\textbf{x} -\textbf{Q}+{\textbf{q}\over 2})) \nonumber \\{} & {} \quad = e^{i \textbf{x}\cdot (\textbf{P}-\textbf{P}')}( e^{i \textbf{q}\cdot (\textbf{P}-\textbf{P}')/2} - e^{-i \textbf{q}\cdot (\textbf{P}-\textbf{P}')/2}) \nonumber \\{} & {} \quad = e^{i \textbf{x}\cdot (\textbf{P}-\textbf{P}')}[ (e_1-e_2) \cos \left( {\textbf{q}\cdot (\textbf{P}'-\textbf{P}\over 2} \right) +i (e_1+e_2) \sin \left( {\textbf{q}\cdot (\textbf{P}'-\textbf{P}\over 2} \right) ]. \end{aligned}$$
(130)

in the expressions for the currents gives the result below for the three derivative terms. Since the \(\textbf{q}\) in these expressions comes from the vector potential, it does not get touched by derivatives. Since there is no other \(\textbf{Q}\) -dependence these factors multiply everything.

$$\begin{aligned}{} & {} -{i \over 4}{1\over (2\pi )^6} \int d\textbf{q} (\partial _{q_i} [ v_{(\textbf{L}\cdot \textbf{S})^2}(\vert \textbf{q} \vert ) e^{i \textbf{x}\cdot (\textbf{P}-\textbf{P}') + i \textbf{q}\cdot (\textbf{p}-\textbf{p}')} (\textbf{S} \times \textbf{q})_i (\textbf{S} \times \textbf{q})] \nonumber \\{} & {} \quad \times [(e_1-e_2) \cos \left( {\textbf{q}\cdot (\textbf{P}'-\textbf{P}\over 2} \right) +i (e_1+e_2) \sin \left( {\textbf{q}\cdot (\textbf{P}'-\textbf{P}\over 2} \right) ] \end{aligned}$$
(131)
$$\begin{aligned}{} & {} \quad -{i \over 2}{1 \over (2\pi )^6} \int d\textbf{q} \pmb {\nabla }_q\cdot [ v_{\textbf{L}\cdot \textbf{L}}(\vert \textbf{q} \vert ) e^{i \textbf{x}\cdot (\textbf{P}-\textbf{P}') + i \textbf{q}\cdot (\textbf{p}-\textbf{p}')} \textbf{q}^2 ] \nonumber \\{} & {} \quad \times [ (e_1-e_2) \cos \left( {\textbf{q}\cdot (\textbf{P}'-\textbf{P}\over 2} \right) +i (e_1+e_2) \sin \left( {\textbf{q}\cdot (\textbf{P}'-\textbf{P}\over 2} \right) ] \end{aligned}$$
(132)
$$\begin{aligned}{} & {} \quad {i\over 2} {1 \over (2\pi )^6} \int d\textbf{q} \pmb {\nabla }_{q_i}[\cdot \textbf{q} v_{\textbf{L}\cdot \textbf{L}}(\vert \textbf{q} \vert ) e^{i \textbf{x}\cdot (\textbf{P}-\textbf{P}') + i \textbf{q}\cdot (\textbf{p}-\textbf{p}')} \textbf{q}] \nonumber \\{} & {} \quad \times [ (e_1-e_2) \cos \left( {\textbf{q}\cdot (\textbf{P}'-\textbf{P}\over 2} \right) +i (e_1+e_2) \sin \left( {\textbf{q}\cdot (\textbf{P}'-\textbf{P} \over 2} \right) ] \end{aligned}$$
(133)

These derivative expressions go in the expression for the current matrix elements, which is the coefficient of the vector potential.

$$\begin{aligned}{} & {} \langle \textbf{P}',\mathbf {p'} \vert \textbf{J}_{(\textbf{L}\cdot \textbf{S})^2}(\textbf{x},0) \vert \textbf{P},\textbf{p} \rangle = \int d\textbf{q} v_{(\textbf{L}\cdot \textbf{S})^2}(\vert \textbf{q} \vert ) {1 \over (2\pi )^6} e^{i \textbf{x}\cdot (\textbf{P}-\textbf{P}') + i \textbf{q}\cdot (\textbf{p}-\textbf{p}')} \nonumber \\{} & {} \quad \times [ (e_1-e_2) \cos \left( {\textbf{q}\cdot (\textbf{P}'-\textbf{P} \over 2} \right) +i (e_1+e_2) \sin \left( {\textbf{q}\cdot (\textbf{P}'-\textbf{P} \over 2} \right) ] \nonumber \\{} & {} \quad \times \left[ - (\textbf{S} \times \textbf{q})\cdot \textbf{p}(\textbf{S} \times \textbf{q}) -{i \over 2} (\textbf{S}^2 \textbf{q} - (\textbf{S}\cdot \textbf{q})\textbf{S} )\right] \nonumber \\{} & {} \quad -i{1 \over 2}{1 \over (2\pi )^6} \int d\textbf{q} (\sum _i\pmb {\nabla {q}}_i [\cdot (\textbf{S} \times \textbf{q})_i v_{(\textbf{L}\cdot \textbf{S})^2}(\vert \textbf{q} \vert ) e^{i \textbf{x}\cdot (\textbf{P}-\textbf{P}') + i \textbf{q}\cdot (\textbf{p}-\textbf{p}')} (\textbf{S} \times \textbf{q})] \nonumber \\{} & {} \quad \times [ (e_1-e_2) \cos \left( {\textbf{q}\cdot (\textbf{P}'-\textbf{P}\over 2} \right) +i (e_1+e_2) \sin \left( {\textbf{q}\cdot (\textbf{P}'-\textbf{P}\over 2} \right) ]. \end{aligned}$$
(134)

For this interaction the term with the derivative acting on the interaction vanishes. This is because the coefficient is \(\textbf{q} \cdot (\textbf{S}\times \textbf{q})=0\). This means that then the \((\textbf{L}\cdot \textbf{S})^2\) current matrix elements become

$$\begin{aligned}{} & {} \langle \textbf{P}',\mathbf {p'} \vert \textbf{J}(\textbf{x},0)_{(\textbf{L}\cdot \textbf{S})^2} \vert \textbf{P},\textbf{p} \rangle = \int d\textbf{q} v_{(\textbf{L}\cdot \textbf{S})^2}(\vert \textbf{q} \vert ) {1 \over (2\pi )^6} e^{i \textbf{x}\cdot (\textbf{P}-\textbf{P}') + i \textbf{q}\cdot (\textbf{p}-\textbf{p}')} \nonumber \\{} & {} \quad \times [ (e_1-e_2) \cos \left( {\textbf{q}\cdot (\textbf{P}'-\textbf{P}\over 2} \right) +i (e_1+e_2) \sin \left( {\textbf{q}\cdot (\textbf{P}'-\textbf{P}\over 2} \right) ] \nonumber \\{} & {} \quad \times \left[ - {1 \over 2} (\textbf{S} \times \textbf{q})\cdot (\textbf{p}+ \textbf{p}')(\textbf{S} \times \textbf{q}) -{i \over 2} (\textbf{S}^2 \textbf{q} - (\textbf{S}\cdot \textbf{q})\textbf{S}) \right] \end{aligned}$$
(135)

which is equivalent to equation (37).

The part of the \(\textbf{L}^2\) current involving derivatives of the interaction also vanishes. To see this first note the expression for the current is

$$\begin{aligned}{} & {} \langle \textbf{P}',\textbf{p}' \vert \textbf{J}(\textbf{x},0)_{\textbf{L}\cdot \textbf{L}} \vert \textbf{P},\textbf{p} \rangle = \int d\textbf{q} v_{\textbf{L}\cdot \textbf{L}}(\vert \textbf{q} \vert ) {1 \over (2\pi )^6} e^{i \textbf{x}\cdot (\textbf{P}-\textbf{P}') + i \textbf{q}\cdot (\textbf{p}-\textbf{p}')} \nonumber \\{} & {} \quad \times [ (e_1-e_2) \cos \left( {\textbf{q}\cdot (\textbf{P}-\textbf{P}'\over 2} \right) +i (e_1+e_2) \sin \left( {\textbf{q}\cdot (\textbf{P}-\textbf{P}'\over 2} \right) ] \nonumber \\{} & {} \quad \left[ -\textbf{q}^2\textbf{p} +(\textbf{q} \cdot \textbf{p}) \textbf{q} +2 \textbf{q} \right] \nonumber \\{} & {} \quad + {1 \over (2\pi )^6} \int d\textbf{q} [ (e_1-e_2) \cos \left( {\textbf{q}\cdot (\textbf{P}-\textbf{P}'\over 2} \right) +i (e_1+e_2) \sin \left( {\textbf{q}\cdot (\textbf{P}-\textbf{P}'\over 2} \right) ] \nonumber \\{} & {} \quad \times \pmb {\nabla }_q\cdot [ v_{\textbf{L}\cdot \textbf{L}}(\vert \textbf{q} \vert ) e^{i \textbf{x}\cdot (\textbf{P}-\textbf{P}') + i \textbf{q}\cdot (\textbf{p}-\textbf{p}')} \textbf{q}^2 ] \end{aligned}$$
(136)
$$\begin{aligned}{} & {} \quad - {1 \over (2\pi )^6} \int d\textbf{q} [ (e_1-e_2) \cos \left( {\textbf{q}\cdot (\textbf{P}-\textbf{P}'\over 2} \right) +i (e_1+e_2) \sin \left( {\textbf{q}\cdot (\textbf{P}-\textbf{P}'\over 2} \right) ] \nonumber \\{} & {} \quad \pmb {\nabla }[\cdot ( \textbf{q} v_{\textbf{L}\cdot \textbf{L}}(\vert \textbf{q} \vert ) e^{i \textbf{x}\cdot (\textbf{P}-\textbf{P}') + i \textbf{q}\cdot (\textbf{p}-\textbf{p}')})\textbf{q} ]. \end{aligned}$$
(137)

For a rotationally invariant \(v_{\textbf{L}\cdot \textbf{L}}(\vert \textbf{q} \vert )\)

$$\begin{aligned} (\pmb {\nabla } v) \textbf{q}^2 = v' \hat{\textbf{q}} \textbf{q}^2 = v' q \textbf{q} \end{aligned}$$
(138)

while

$$\begin{aligned} \textbf{q} \cdot (\pmb {\nabla }v) \textbf{q} = v'q\textbf{q}. \end{aligned}$$
(139)

These terms come with opposite signs in the expression above so they exactly cancel. What remains after eliminating these terms is

$$\begin{aligned}{} & {} \langle \textbf{P}',\textbf{p}' \vert \textbf{J}(\textbf{x},0)_{\textbf{L}\cdot \textbf{L}} \vert \textbf{P},\textbf{p} \rangle = \int d\textbf{q} v_{\textbf{L}\cdot \textbf{L}}(\vert \textbf{q} \vert ) {1 \over (2\pi )^6} e^{i \textbf{x}\cdot (\textbf{P}-\textbf{P}') + i \textbf{q}\cdot (\textbf{p}-\textbf{p}')} \nonumber \\{} & {} \quad \times [ (e_1-e_2) \cos \left( {\textbf{q}\cdot (\textbf{P}-\textbf{P}'\over 2} \right) +i (e_1+e_2) \sin \left( {\textbf{q}\cdot (\textbf{P}-\textbf{P}'\over 2} \right) ] \nonumber \\{} & {} \quad \times \left[ -\textbf{q}^2\textbf{p} + (\textbf{q} \cdot \textbf{p}) \textbf{q} -i\textbf{q} +{1 \over 2}\textbf{q}^2(\textbf{p}-\textbf{p}') -{1 \over 2} \textbf{q}\cdot (\textbf{p}-\textbf{p}') \textbf{q} + i \textbf{q} \right] \nonumber \\{} & {} \quad = \int d\textbf{q} v_{\textbf{L}\cdot \textbf{L}}(\vert \textbf{q} \vert ) {1 \over (2\pi )^6} e^{i \textbf{x}\cdot (\textbf{P}-\textbf{P}') + i \textbf{q}\cdot (\textbf{p}-\textbf{p}')} \nonumber \\{} & {} \quad \times [ (e_1-e_2) \cos \left( {\textbf{q}\cdot (\textbf{P}-\textbf{P}'\over 2} \right) +i (e_1+e_2) \sin \left( {\textbf{q}\cdot (\textbf{P}-\textbf{P}'\over 2} \right) ] \nonumber \\{} & {} \quad \times {1 \over 2} \textbf{q} \times (\textbf{q} \times (\textbf{p}+\textbf{p}')) \end{aligned}$$
(140)

which is equivalent to equation (38) Again the derivative of the potential cancels in this expression as well. This means that the potentials can be factored.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyzou, W.N. Electromagnetic Current Operators for Phenomenological Relativistic Models. Few-Body Syst 65, 2 (2024). https://doi.org/10.1007/s00601-023-01871-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-023-01871-4

Navigation