Skip to main content
Log in

Characterization of gynoecious-parthenocarpic and monoecious cucumber lines (Cucumis sativus L.) and regression modelling to obtain high yielding and functionally rich genotypes

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Cucumber (Cucumis sativus L) is a tropical vegetable crop of high economic importance. Cucumber is not only used as food but also the source of several antioxidant nutrients like β carotene and ascorbic acid. The present study was aimed to characterize gynoecious-parthenocarpic and monoecious cucumber lines along with their hybrids for qualitative, quantitative and quality parameters and regression modelling to predict the most sensitive characters influencing yield and nutrient contents (β carotene and ascorbic acid). Characterization revealed conspicuous variation in different qualitative and quantitative characters among the parental lines and hybrids. The gynoecious and parthenocarpic parent Pusa Parthenocarpic produced elongated fruits with acute shaped blossom and peduncle ends while, the other two monoecious and non-parthenocarpic parents, Devgiri and Seven Star produced cylindrical fruit with obtuse ends. All the monoecious × gynoecious hybrids expressed predominantly gynoecious sex form and late parthenocarpy. The monoecious parent recorded higher yield as compared to the gynoecious parent. Acute fruit shape at peduncle end was the sole qualitative character which positively influenced the ascorbic acid content of fruit. Regression modelling revealed fruit length, crispy fruit texture and total chlorophyll content to be most influential towards yield in a positive direction. This study confirmed the strategy of combining qualitative and quantitative characters to enhance yield and nutrient content which can be utilized to develop high yielding and functionally rich cucumber genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Alhariri A, Behera TK, Jat GS, Devi MB, Boopalakrishnan G, Hemeda NF, Teleb AA, Ismail E, Elkordy A (2021) Analysis of genetic diversity and Population structure in bitter Gourd (Momordica charantia L.) using morphological and SSR markers. Plants 10:1860. https://doi.org/10.3390/plants10091860

    Article  PubMed  PubMed Central  Google Scholar 

  • Batubara I, Komariah K, Sandrawati A, Nurcholis W (2020) Genotype selection for phytochemical content and pharmacological activities in ethanol extracts of fifteen types of Orthosiphon Aristatus (Blume) Miq. Leaves using chemometric analysis. Sci Rep 10:1–11

    Article  Google Scholar 

  • Cheng F, Song M, Zhang M, Cheng C, Chen J, Lou Q (2022) A SNP mutation in the CsCLAVATA1 leads to pleiotropic variation in plant architecture and fruit morphogenesis in cucumber (Cucumis sativus L). Plant Sci. https://doi.org/10.1016/j.plantsci.2022.111397

    Article  PubMed  Google Scholar 

  • Cheng Z, Liu X, Yan S, Liu B, Zhong Y, Song W, Chen J, Wang Z, Che G, Liu L, Ying A (2023) Pollen tube emergence is mediated by ovary-expressed ALCATRAZ in cucumber. Nat Commun. https://doi.org/10.1038/s41467-023-35936-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Dandawate P, Subramaniam D, Panovich P, Standing D, Krishnamachary B, Kaushik G, Thomas SM, Dhar A, Weir SJ, Jensen RA, Anant S (2020) Cucurbitacin B and I inhibits colon Cancer growth by targeting the notch signalling pathway. Sci Rep 10:1–15

    Article  Google Scholar 

  • De Ponti OMB, Garretsen F (1976) Inheritance of parthenocarpy in pickling cucumbers (Cucumis sativus L.) and linkage with other characters. Euphytica 25:633–642

    Article  Google Scholar 

  • Deepa SK, Hadimani HP, Hanchinamani CN, Shet R, Koulgi S, Ashok O (2018) Studies on character association in cucumber (Cucumis sativus L). Int J Curr Microbiol 7:1977–1982

    Google Scholar 

  • Ding L, Yan S, Jiang L, Liu M, Zhang J, Zhao J, Zhao W, Han YY, Wang Q, Zhang X (2015) HANABA TARANU regulates the shoot apical meristem and leaf development in cucumber (Cucumis sativus L). J Exp Bot 66:7075–7087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du H, Wang G, Pan J, Chen Y, Xiao T, Zhang L, Zhang K, Wen H, Xiong L, Yu Y, He H (2020) The HD-ZIP IV transcription factor tril regulates fruit spine density through gene dosage effects in cucumber. J Exp Bot 71:6297–6310

  • Ene CO, OgbonnaPE, Agbo CU, Chukwudi UP (2016) Studies of phenotypic and genotypic variation in sixteen cucumber genotypes Chil. J Agric Res 76:307–313

    Google Scholar 

  • Gao Y, Islam MS, Tian J, Lui VWY, Xiao D (2014) Inactivation of ATP citrate lyase by Cucurbitacin B: a bioactive compound from cucumber, inhibits Prostate cancer growth. Cancer Lett 349:15–25

    Article  CAS  PubMed  Google Scholar 

  • Gary C, Jones JW, Tchamitchian M (1998) Crop modelling in horticulture: state of the art. Sci Hortic 74:3–20

    Article  Google Scholar 

  • Greven S, Scheipl F (2017) A general framework for functional regression modelling. Stat Model 17:1–35

    Article  Google Scholar 

  • Haldhar SM, Choudhary BR, Bhargava R, Gurjar K (2015) Host plant resistance (HPR) traits of ridge gourd (Luffa acutangula (Roxb) L. against melon fruit fly, (Bactrocera cucurbitae (Coquillett)) in hot arid region of. India Sci Hort 194:168–174

    Article  Google Scholar 

  • Hawthorn LR, Wellington R (1930) Geneva, a greenhouse cucumber that develops fruit without pollination. USDA Bookl 580:1382

    Google Scholar 

  • Hazra P, Longjam M, Chattopadhyay A (2018) Stacking of mutant genes in the development of purple tomato rich in both lycopene and anthocyanin contents. Sci Hortic 239:253–258

    Article  CAS  Google Scholar 

  • Hazra P, Hazra S, Acharya B, Dutta S, Saha S, Mahapatra P, Pradeepkumar P, Pal H, Chattopadhyay A, Chakraborty I, Jambhulkar S, Chatterjee S, Ghosh SK (2022) Diversity of nutrient and nutraceutical contents in the fruits and its relationship to morphological traits in bitter gourd (Momordica charantia L). Sci Hortic. https://doi.org/10.1016/j.scienta.2022.111414

    Article  Google Scholar 

  • Heidari H, Kamalinejad M, Noubarani M, Rahmati M, Jafarian I, Adiban H, Eskandari MR (2016) Protective mechanisms of Cucumis sativus in Diabetes related models of oxidative stress and carbonyl stress. Bio Impacts 6:33–39

    Google Scholar 

  • Jat GS, Munshi AD, Behera TK, Bharadwaj C (2017) Inheritance of parthenocarpy in gynoecious cucumber (Cucumis sativus L.) cultivar PPC-2. J Hortic Sci 12:193–197

    Article  Google Scholar 

  • Kan B, Yang Y, Du P, Li X, Lai W, Hu H (2022) Chlorophyll decomposition is accelerated in banana leaves after the long-term magnesium deficiency according to transcriptome analysis. PLoS ONE 17:e0270610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kathayat K, Rawat M, Kandpal G, Pandey G, Chauhan P, Tiwari R (2018) Genetic variability in cucumber (Cucumis sativus L.): a. Plant Arch 18:1223–1228

    Google Scholar 

  • Kaur T, Dhall RK, Sharma SP (2020) Gene effect studies for quality characters in cucumber (Cucumis sativus L.) using gynoecious parent. Genetika 52:727–734

    Article  Google Scholar 

  • Kohli UK, Vikram A (2004) Hybrid cucumber. J New Seeds 6:375–380

    Article  Google Scholar 

  • Koku K, Choudhary TH, Yadav RK (2020) Genetic resources from north eastern region of India and their role in improvement of vegetable crops. Int J Innov Hortic 9:26–38

    Google Scholar 

  • Kumar A, Kumar S, Pal AK (2008) Genetic variability and characters association for fruit yield and yield traits in cucumber. Indian J Hortic 65:423–428

    Google Scholar 

  • Kumar S, Kumar R, Kumar D, Gautam N, Dogra RK, Mehta DK, Sharma HD, Kansal S (2016) Parthenocarpic gynoecious parental lines of cucumber introduced from Netherlands for developing high-yielding, quality hybrids. J Crop Improv 30:352–369

    Article  CAS  Google Scholar 

  • Kumari S, Krishnan N, Dubey V, Das B, Pandey KK, Singh J (2021) Investigations on annual spreading of viruses infecting cucurbit crops in Uttar Pradesh State, India. Sci Rep 11:1–17

    Google Scholar 

  • Li Z, Niu H, Guo Y (2022) Cucumber Sex determination: aspects of gene interactions. In: Pandey S, Weng Y, Behera TK, Bo K (eds) The Cucumber Genome. Compendium of Plant genomes. Springer, Cham, pp 145–157

    Chapter  Google Scholar 

  • Lietzow CD, Zhu H, Pandey S, Havey MJ, Weng Y (2016) QTL mapping of parthenocarpic fruit set in north American processing cucumber. Theor Appl Genet 129:2387–2401

    Article  PubMed  Google Scholar 

  • Liu Y, Xu H, Wang H, Feng S (2022) Research Progress in Leaf related molecular breeding of Cucurbitaceae. Agronomy. https://doi.org/10.3390/agronomy12112908

    Article  Google Scholar 

  • Mallik J, Das P, Das S (2013) Pharmacological activity of Cucumis sativus L.–a complete overview. Asian J Pharm Res Dev1:1–6

    Google Scholar 

  • Miao H, Gu X, Zhang S, Zhang Z, Huang S, Wang Y, Cheng Z, Zhang R, Mu S, Li M, Zhang Z (2011) Mapping QTLs for fruit-associated traits in Cucumis sativus L. Sci Agric Sin 44:5031–5040

    Google Scholar 

  • Mukherjee PK, Nema NK, Maity N, Sarkar BK (2013) Phytochemical and therapeutic potential of cucumber. Fitoterapia 84:227–236

    Article  CAS  PubMed  Google Scholar 

  • Naik PR, Adivappar N, Srinivasa V, Gangaprasad S (2019) Testing of hybrid vigour for sex phenology in Cucumber (Cucumis sativus L). Int J Curr Microbiol App Sci 8:1923–1929

    Article  Google Scholar 

  • Nema NK, Maity N, Sarkar B, Mukherjee PK (2011) Cucumis sativus fruit potential antioxidant, anti-hyaluronidase, and anti-elastase agent. Arch Dermatol Res 303:247–252

    Article  CAS  PubMed  Google Scholar 

  • Nourani V, Fard MS (2012) Sensitivity analysis of the artificial neural network out-puts in simulation of the evaporation process at different climatologic regimes. Adv Eng Soft 47:127–146

    Article  Google Scholar 

  • Osae BA, Amanullah S, Liu H, Liu S, Saroj A, Zhang C, Liu T, Gao P, Luan F, Euphytica (2022) https://doi.org/10.1007/s10681-022-02990-5

  • Pan YP, Wang YH, McGregor C, Liu S, Luan FS, Gao ML, Weng Y (2020) Genetic architecture of fruit size and shape variation in cucurbits: a comparative perspective. Theor Appl Genet 133:1–21

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Kujur SN (2022) Importance, distribution, Botany and Genetics. In: Pandey S, Weng Y, Behera TK, Bo K (eds) The Cucumber Genome. Compendium of Plant genomes. Springer, Cham, pp 1–13

    Chapter  Google Scholar 

  • Pandey S, Ansari WA, Mishra VK, Singh AK, Singh M (2013) Genetic diversity in Indian cucumber based on microsatellite and morphological markers. Biochem Syst Ecol 51:19–27

    Article  CAS  Google Scholar 

  • Pati K, Munshi AD, Behera TK (2015) Inheritance of gynoecism in cucumber (Cucumis sativus L) using genotype GBS-1 as gynoecious parent. Genetika-Belgrade 47:349–356

    Article  Google Scholar 

  • Pike LM, Peterson CE (1969) Inheritance of parthenocarpy in the cucumber (Cucumis sativus L). Euphytica 18:101–105

    Article  Google Scholar 

  • Ranjan P, Gangopadhyay KK, Bag MK, Roy A, Srivastava R, Bhardwaj R, Dutta M (2015) Evaluation of cucumber (Cucumis sativus L.) germplasm for agronomic traits and Disease resistance and estimation of genetic variability. Indian J AgricSci 85:234–239

    Article  Google Scholar 

  • Sadasivam S, manickam A (1996) Biochemical methods, 2nd edn. New Age International Publisher, New Delhi

    Google Scholar 

  • Seshadri VS, Munshi AD, Selvakumar R, Sureja AK, Dey SS, Parthasarathy VA, Hazra P (2021) Cucurbits. In Som MG, Bose TK, Chattopadhyay A, Maity TK, Kabir J (eds.) Vegetable crops Volume IV, 4th Revised Edition, Daya Publishing House (A Division of Astral International Pvt. Ltd.), New Delhi, pp. 1-580

  • Sheng Y, Pan Y, Li Y, Yang L, Weng Y (2020) Quantitative trait loci for fruit size and flowering time-related traits under domestication and diversifying selection in cucumber (Cucumis sativus). Plant Breed 139:176–191

    Article  CAS  Google Scholar 

  • Song ZC, Miao H, Zhang S, Wang Y, Zhang SP, Gu XF (2016) Genetic analysis and QTL mapping of fruit peduncle length in cucumber (Cucumis sativus L). PLoS ONE 11(12):e0167845

    Article  PubMed  PubMed Central  Google Scholar 

  • Song M, Wei Q, Wang J, Fu W, Qin X, Lu X, Cheng F, Yang K, Zhang L, Yu X, Li J (2018) Fine mapping of CsVYL, conferring virescent leaf through the regulation of chloroplast development in cucumber. Front Plant Sci 9:432. https://doi.org/10.3389/fpls.2018.00432

    Article  PubMed  PubMed Central  Google Scholar 

  • Song M, Zhang M, Cheng F, Wei Q, Wang J, Davoudi M, Chen J, Lou Q (2020) An irregularly striped rind mutant reveals new insight into the function of PG1β in cucumber (Cucumis sativus L). Theor Appl Genet 133:371–382

    Article  CAS  PubMed  Google Scholar 

  • Sotiroudis G, Melliou E, Sotiroudis TG, Chinou I (2010) Chemical analysis, antioxidant and antimicrobial activity of three Greek cucumber (Cucumis sativus) cultivars. J Food Biochem 34:61–78

    Article  Google Scholar 

  • Sun Z, Staub JE, Chung SM, Lower RL (2006) Identification and comparative analysis of quantitative trait loci associated with parthenocarpy in processing cucumber. Plant Breed 125:281–287

    Article  CAS  Google Scholar 

  • Tranmer M, Elliot M (2008) Multiple linear regression. The Cathie Marsh Centre for Census and Survey Research (CCSR) 5:1–5

    Google Scholar 

  • Tuan PA, Kim JK, Park NI, Lee SY, Park SU (2011) Carotenoid content and expression of phytoene synthase and phytoenedesaturase genes in bitter melon (Momordica charantia). Food Chem 126:1686–1692

    Article  CAS  PubMed  Google Scholar 

  • Uthpala TG, Marapana RAU, Lakmini KP, Wettimuny DC (2020) Nutritional bioactive compounds and health benefits of fresh and processed cucumber (Cucumis sativus L.).Sumerianz. J Biotech 3:75–82

    Google Scholar 

  • Wang M, Gu XF, Miao H, Liu SL, Wang Y, Wehner TC, Zhang SP (2014) Molecular mapping and candidate gene analysis for heavy netting gene (H) of mature fruit of cucumber (Cucumis sativus L). Sci Agric Sin 47:1550–1557

    CAS  Google Scholar 

  • Wang Q, Lu Q, Zhao H (2015) A review of study designs and statistical methods for genomic epidemiology studies using next generation sequencing. Front Genet 6:149. https://doi.org/10.3389/fgene.2015.00149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Chen L, Liang Z, He X, Liu W, Jiang B, Yan J, Sun P, Cao Z, Peng Q, Lin YE (2020) Metabolome and transcriptome analyses reveal chlorophyll and anthocyanin metabolism pathway associated with cucumber fruit skin colour. BMC Plant Biol 20:1–13

    Article  Google Scholar 

  • Wang Y, Jiang B, Dymerski R, Xu X, Weng Y (2021) Quantitative trait loci for horticulturally important traits defining the Sikkim cucumber, Cucumis sativus var. Sikkimensis. Theor Appl Genet 134:229–247

  • Wei QZ, Fu WY, Wang YZ, Qin XD, Wang J, Li J, Lou QF, Chen JF (2016) Rapid identification of fruit length loci in cucumber (Cucumis sativus L.) using next-generation sequencing (NGS)-based QTL analysis. Sci Rep 6:1–11

    CAS  Google Scholar 

  • Weng Y, Wehner TC (2017) Cucumber gene catalog 2017. Cucurbit Genet Coop Rep 40:17–54

    Google Scholar 

  • Wu S, Zhang B, Keyhaninejad N, Rodríguez GR, Kim HJ, Chakrabarti M, Illa-Berenguer E, Taitano NK, Gonzalo MJ, Díaz A, Pan Y (2018) A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nat Commun 9:4734. https://doi.org/10.1038/s41467-018-07216-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Liu X, Sun C, Song X, Li X, Cui H, Guo J, Liu L, Ying A, Zhang Z, Zhu X (2023) CsTRM5 regulates fruit shape via mediating cell division direction and cell expansion in cucumber. Hortic Res p uhad007. https://doi.org/10.1093/hr/uhad007

  • Yan L, Lou L, Li X, Lou Q, Feng Z, Chen J (2010) Inheritance of parthenocarpy in monoecious cucumber. Sci Agric Sin 43:1295–1301

    Google Scholar 

  • Zhang J (2008) Positive selection, not negative selection, in the pseudogenization of rcsA in Yersinia pestis. Proc Natl Acad Sci 105:E69–E69

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang P, Puonti-Kaerlas J (2000) PIG-mediated cassava transformation using positive and negative selection. Plant Cell Rep 19:1041–1048

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Pratap AS, Natarajan S, Pugalendhi L, Kikuchi S, Sassa H, Senthil N, Koba T (2012) Evaluation of morphological and molecular diversity among south Asian germplasms of Cucumis sativus and Cucumis melo. Int Sch Res Notices. https://doi.org/10.5402/2012/134134

    Article  Google Scholar 

  • Zhang T, Li X, Yang Y, Guo X, Feng Q, Dong X, Chen S (2019) Genetic analysis and QTL mapping of fruit length and diameter in a cucumber (Cucumis sativus L.) recombinant inbred line (RIL) population. Sci Hortc 250:214–222

    Article  Google Scholar 

  • Zhang H, Li S, Yang L, Cai G, Chen H, Gao D, Lin T, Cui Q, Wang D, Li Z, Cai R (2021) Gain-of-function of the 1-aminocyclopropane-1-carboxylate synthase gene ACS1G induces female flower development in cucumber gynoecy. Plant Cell 33(2):306–321

    Article  PubMed  Google Scholar 

  • Zhang H, Wang Y, Tan J, Weng Y (2022) Functional copy number variation of CsSHINE1 is associated with fruit skin netting intensity in cucumber. Cucumis sativus Theor Appl Genet 135(6):2101–2119

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Chen C, Liu X, Yang K, Wang C, Lu X, Tian Y, Chen H (2022) The formation of hollow trait in cucumber (Cucumis sativus L) fruit is controlled by CsALMT2. Int J Mol Sci 23:6173. https://doi.org/10.3390/ijms23116173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the receipt of parthenocarpic and gynoecious genotype, Pusa Parthenocarpic from the Division of Vegetable Science, Indian Agricultural Research Institute, New Delhi, India.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed significantly towards the final make-up of the paper. Conceptualisation (Pranab Hazra); Data curation (Soham Hazra and Pranab Hazra); Formal analysis (Soham Hazra); Investigation and methodology (Suvojit Bose); Supervision (Chandan Karak and Pranab Hazra); Writing-original draft (Soham Hazra); Writing-reviewing and editing (Arup Chattopadhyay, Shibnath Basfore and Anirban Maji).

Corresponding author

Correspondence to Soham Hazra.

Ethics declarations

Ethical approval

Research involving Human Participants and/or Animals: This article does not contain any studies with human participants or animals performed by any of the authors.

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bose, S., Hazra, S., Hazra, P. et al. Characterization of gynoecious-parthenocarpic and monoecious cucumber lines (Cucumis sativus L.) and regression modelling to obtain high yielding and functionally rich genotypes. Hortic. Environ. Biotechnol. (2023). https://doi.org/10.1007/s13580-023-00579-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13580-023-00579-y

Keywords

Navigation